scholarly journals 3D Reconstruction Method of Rapeseed Plants in the Whole Growth Period Using RGB-D Camera

Author(s):  
Xiaowen Teng ◽  
Guangsheng Zhou ◽  
Yuxuan Wu ◽  
Chenglong Huang ◽  
Wanjing Dong ◽  
...  

The 3D reconstruction method using RGB-D camera has a good balance in hardware cost, point cloud quality and automation. However, due to the limitation of inherent structure and imaging principle, the acquired point cloud has problems such as a lot of noise and difficult registration. This paper proposes a three-dimensional reconstruction method using Azure Kinect to solve these inherent problems. Shoot color map, depth map and near-infrared image of the target from six perspectives by Azure Kinect sensor. Multiply the 8-bit infrared image binarization with the general RGB-D image alignment result provided by Microsoft to remove ghost images and most of the background noise. In order to filter the floating point and outlier noise of the point cloud, a neighborhood maximum filtering method is proposed to filter out the abrupt points in the depth map. The floating points in the point cloud are removed before generating the point cloud, and then using the through filter filters out outlier noise. Aiming at the shortcomings of the classic ICP algorithm, an improved method is proposed. By continuously reducing the size of the down-sampling grid and the distance threshold between the corresponding points, the point clouds of each view are continuously registered three times, until get the complete color point cloud. A large number of experimental results on rape plants show that the point cloud accuracy obtained by this method is 0.739mm, a complete scan time is 338.4 seconds, and the color reduction is high. Compared with a laser scanner, the proposed method has considerable reconstruction accuracy and a significantly ahead of the reconstruction speed, but the hardware cost is much lower and it is easy to automate the scanning system. This research shows a low-cost, high-precision 3D reconstruction technology, which has the potential to be widely used for non-destructive measurement of crop phenotype.

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4628
Author(s):  
Xiaowen Teng ◽  
Guangsheng Zhou ◽  
Yuxuan Wu ◽  
Chenglong Huang ◽  
Wanjing Dong ◽  
...  

The three-dimensional reconstruction method using RGB-D camera has a good balance in hardware cost and point cloud quality. However, due to the limitation of inherent structure and imaging principle, the acquired point cloud has problems such as a lot of noise and difficult registration. This paper proposes a 3D reconstruction method using Azure Kinect to solve these inherent problems. Shoot color images, depth images and near-infrared images of the target from six perspectives by Azure Kinect sensor with black background. Multiply the binarization result of the 8-bit infrared image with the RGB-D image alignment result provided by Microsoft corporation, which can remove ghosting and most of the background noise. A neighborhood extreme filtering method is proposed to filter out the abrupt points in the depth image, by which the floating noise point and most of the outlier noise will be removed before generating the point cloud, and then using the pass-through filter eliminate rest of the outlier noise. An improved method based on the classic iterative closest point (ICP) algorithm is presented to merge multiple-views point clouds. By continuously reducing both the size of the down-sampling grid and the distance threshold between the corresponding points, the point clouds of each view are continuously registered three times, until get the integral color point cloud. Many experiments on rapeseed plants show that the success rate of cloud registration is 92.5% and the point cloud accuracy obtained by this method is 0.789 mm, the time consuming of a integral scanning is 302 seconds, and with a good color restoration. Compared with a laser scanner, the proposed method has considerable reconstruction accuracy and a significantly ahead of the reconstruction speed, but the hardware cost is much lower when building a automatic scanning system. This research shows a low-cost, high-precision 3D reconstruction technology, which has the potential to be widely used for non-destructive measurement of rapeseed and other crops phenotype.


2015 ◽  
Vol 764-765 ◽  
pp. 1375-1379 ◽  
Author(s):  
Cheng Tiao Hsieh

This paper aims at presenting a simple approach utilizing a Kinect-based scanner to create models available for 3D printing or other digital manufacturing machines. The outputs of Kinect-based scanners are a depth map and they usually need complicated computational processes to prepare them ready for a digital fabrication. The necessary processes include noise filtering, point cloud alignment and surface reconstruction. Each process may require several functions and algorithms to accomplish these specific tasks. For instance, the Iterative Closest Point (ICP) is frequently used in a 3D registration and the bilateral filter is often used in a noise point filtering process. This paper attempts to develop a simple Kinect-based scanner and its specific modeling approach without involving the above complicated processes.The developed scanner consists of an ASUS’s Xtion Pro and rotation table. A set of organized point cloud can be generated by the scanner. Those organized point clouds can be aligned precisely by a simple transformation matrix instead of the ICP. The surface quality of raw point clouds captured by Kinect are usually rough. For this drawback, this paper introduces a solution to obtain a smooth surface model. Inaddition, those processes have been efficiently developed by free open libraries, VTK, Point Cloud Library and OpenNI.


Author(s):  
J. Zhu ◽  
Y. Xu ◽  
L. Hoegner ◽  
U. Stilla

<p><strong>Abstract.</strong> In this work, we discussed how to directly combine thermal infrared image (TIR) and the point cloud without additional assistance from GCPs or 3D models. Specifically, we propose a point-based co-registration process for combining the TIR image and the point cloud for the buildings. The keypoints are extracted from images and point clouds via primitive segmentation and corner detection, then pairs of corresponding points are identified manually. After that, the estimated camera pose can be computed with EPnP algorithm. Finally, the point cloud with thermal information provided by IR images can be generated as a result, which is helpful in the tasks such as energy inspection, leakage detection, and abnormal condition monitoring. This paper provides us more insight about the probability and ideas about the combining TIR image and point cloud.</p>


Author(s):  
Fouad Amer ◽  
Mani Golparvar-Fard

Complete and accurate 3D monitoring of indoor construction progress using visual data is challenging. It requires (a) capturing a large number of overlapping images, which is time-consuming and labor-intensive to collect, and (b) processing using Structure from Motion (SfM) algorithms, which can be computationally expensive. To address these inefficiencies, this paper proposes a hybrid SfM-SLAM 3D reconstruction algorithm along with a decentralized data collection workflow to map indoor construction work locations in 3D and any desired frequency. The hybrid 3D reconstruction method is composed of a pipeline of Structure from Motion (SfM) coupled with Multi-View Stereo (MVS) to generate 3D point clouds and a SLAM (Simultaneous Localization and Mapping) algorithm to register the separately formed models together. Our SfM and SLAM pipelines are built on binary Oriented FAST and Rotated BRIEF (ORB) descriptors to tightly couple these two separate reconstruction workflows and enable fast computation. To elaborate the data capture workflow and validate the proposed method, a case study was conducted on a real-world construction site. Compared to state-of-the-art methods, our preliminary results show a decrease in both registration error and processing time, demonstrating the potential of using daily images captured by different trades coupled with weekly walkthrough videos captured by a field engineer for complete 3D visual monitoring of indoor construction operations.


Author(s):  
K. Thoeni ◽  
A. Giacomini ◽  
R. Murtagh ◽  
E. Kniest

This work presents a comparative study between multi-view 3D reconstruction using various digital cameras and a terrestrial laser scanner (TLS). Five different digital cameras were used in order to estimate the limits related to the camera type and to establish the minimum camera requirements to obtain comparable results to the ones of the TLS. The cameras used for this study range from commercial grade to professional grade and included a GoPro Hero 1080 (5 Mp), iPhone 4S (8 Mp), Panasonic Lumix LX5 (9.5 Mp), Panasonic Lumix ZS20 (14.1 Mp) and Canon EOS 7D (18 Mp). The TLS used for this work was a FARO Focus 3D laser scanner with a range accuracy of ±2 mm. The study area is a small rock wall of about 6 m height and 20 m length. The wall is partly smooth with some evident geological features, such as non-persistent joints and sharp edges. Eight control points were placed on the wall and their coordinates were measured by using a total station. These coordinates were then used to georeference all models. A similar number of images was acquired from a distance of between approximately 5 to 10 m, depending on field of view of each camera. The commercial software package PhotoScan was used to process the images, georeference and scale the models, and to generate the dense point clouds. Finally, the open-source package CloudCompare was used to assess the accuracy of the multi-view results. Each point cloud obtained from a specific camera was compared to the point cloud obtained with the TLS. The latter is taken as ground truth. The result is a coloured point cloud for each camera showing the deviation in relation to the TLS data. The main goal of this study is to quantify the quality of the multi-view 3D reconstruction results obtained with various cameras as objectively as possible and to evaluate its applicability to geotechnical problems.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Ming Guo ◽  
Bingnan Yan ◽  
Tengfei Zhou ◽  
Deng Pan ◽  
Guoli Wang

To obtain high-precision measurement data using vehicle-borne light detection and ranging (LiDAR) scanning (VLS) systems, calibration is necessary before a data acquisition mission. Thus, a novel calibration method based on a homemade target ball is proposed to estimate the system mounting parameters, which refer to the rotational and translational offsets between the LiDAR sensor and inertial measurement unit (IMU) orientation and position. Firstly, the spherical point cloud is fitted into a sphere to extract the coordinates of the centre, and each scan line on the sphere is fitted into a section of the sphere to calculate the distance ratio from the centre to the nearest two sections, and the attitude and trajectory parameters of the centre are calculated by linear interpolation. Then, the real coordinates of the centre of the sphere are calculated by measuring the coordinates of the reflector directly above the target ball with the total station. Finally, three rotation parameters and three translation parameters are calculated by two least-squares adjustments. Comparisons of the point cloud before and after calibration and the calibrated point clouds with the point cloud obtained by the terrestrial laser scanner show that the accuracy significantly improved after calibration. The experiment indicates that the calibration method based on the homemade target ball can effectively improve the accuracy of the point cloud, which can promote VLS development and applications.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1078 ◽  
Author(s):  
Dawid Warchoł ◽  
Tomasz Kapuściński ◽  
Marian Wysocki

The paper presents a method for recognizing sequences of static letters of the Polish finger alphabet using the point cloud descriptors: viewpoint feature histogram, eigenvalues-based descriptors, ensemble of shape functions, and global radius-based surface descriptor. Each sequence is understood as quick highly coarticulated motions, and the classification is performed by networks of hidden Markov models trained by transitions between postures corresponding to particular letters. Three kinds of the left-to-right Markov models of the transitions, two networks of the transition models—independent and dependent on a dictionary—as well as various combinations of point cloud descriptors are examined on a publicly available dataset of 4200 executions (registered as depth map sequences) prepared by the authors. The hand shape representation proposed in our method can also be applied for recognition of hand postures in single frames. We confirmed this using a known, challenging American finger alphabet dataset with about 60,000 depth images.


Sign in / Sign up

Export Citation Format

Share Document