scholarly journals Entropy and Entropic Forces to Model Biological Fluids

Author(s):  
Rafael M. Gutierrez ◽  
George T. Shubeita ◽  
Chandrashekhar U. Murade ◽  
Jianfeng Guo

Living cells are complex systems that may be characterized by fluids crowded by hundreds of different elements in particular by a high density of polymers; they are an excellent and challenging laboratory to study exotic emerging physical phenomena where entropic forces emerge from organization processes of many-body interactions. The competition between microscopic and entropic forces may generate complex behaviors like phase transitions that living cells may use to accomplish their functions. In the era of the big data, when biological information abounds but general principles and precise understanding of the microscopic interactions scarce, the entropy methods may offer significant information. In this work we develop a model where the thermodynamic equilibrium results from the competition between an effective electrostatic shortrange interaction and the entropic forces emerging in a fluid crowded by different size polymers. The target audience for this article are interdisciplinary researchers in complex systems, particularly in thermodynamics and biophysics modeling.

Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1166
Author(s):  
Rafael M. Gutierrez ◽  
George T. Shubeita ◽  
Chandrashekhar U. Murade ◽  
Jianfeng Guo

Living cells are complex systems characterized by fluids crowded by hundreds of different elements, including, in particular, a high density of polymers. They are an excellent and challenging laboratory to study exotic emerging physical phenomena, where entropic forces emerge from the organization processes of many-body interactions. The competition between microscopic and entropic forces may generate complex behaviors, such as phase transitions, which living cells may use to accomplish their functions. In the era of big data, where biological information abounds, but general principles and precise understanding of the microscopic interactions is scarce, entropy methods may offer significant information. In this work, we developed a model where a complex thermodynamic equilibrium resulted from the competition between an effective electrostatic short-range interaction and the entropic forces emerging in a fluid crowded by different sized polymers. The target audience for this article are interdisciplinary researchers in complex systems, particularly in thermodynamics and biophysics modeling.


Open Physics ◽  
2010 ◽  
Vol 8 (4) ◽  
Author(s):  
Kaan Manisa ◽  
Ülfet Atav ◽  
Sibel Sarıaydın

AbstractA Variational Monte Carlo (VMC) method is employed to investigate the properties of symmetric and asymmetric nuclear matter. The realistic Urbana V 14 twonucleon interaction potential of Lagaris and Pandharipande was used to describe the microscopic interactions. Also, many body interactions are included as a density dependent term in the potential. Total kinetic and potential energies per particle are calculated for asymmetric nuclear matter by VMC method at various densities and isospin asymmetry parameters. The results are compared with data found in literature, and it was observed that the results obtained in this study reasonably agree with the results found in the literature. Also, the symmetry energy and incompressibility factor of the nuclear matter were obtained. The results obtained are in good agreement with those obtained by various authors with different methods and techniques.


2020 ◽  
Author(s):  
Marc Riera ◽  
Alan Hirales ◽  
Raja Ghosh ◽  
Francesco Paesani

<div> <div> <div> <p>Many-body potential energy functions (PEFs) based on the TTM-nrg and MB-nrg theoretical/computational frameworks are developed from coupled cluster reference data for neat methane and mixed methane/water systems. It is shown that that the MB-nrg PEFs achieve subchemical accuracy in the representation of individual many-body effects in small clusters and enables predictive simulations from the gas to the liquid phase. Analysis of structural properties calculated from molecular dynamics simulations of liquid methane and methane/water mixtures using both TTM-nrg and MB-nrg PEFs indicates that, while accounting for polarization effects is important for a correct description of many-body interactions in the liquid phase, an accurate representation of short-range interactions, as provided by the MB-nrg PEFs, is necessary for a quantitative description of the local solvation structure in liquid mixtures. </p> </div> </div> </div>


1991 ◽  
Vol 44 (8) ◽  
pp. 4006-4009 ◽  
Author(s):  
B. B. Goldberg ◽  
D. Heiman ◽  
M. Dahl ◽  
A. Pinczuk ◽  
L. Pfeiffer ◽  
...  

2021 ◽  
Vol 118 (11) ◽  
pp. 113101
Author(s):  
Xiaoli Zhu ◽  
Siting Ding ◽  
Lihui Li ◽  
Ying Jiang ◽  
Biyuan Zheng ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
T. M. Wintermantel ◽  
M. Buchhold ◽  
S. Shevate ◽  
M. Morgado ◽  
Y. Wang ◽  
...  

AbstractWhether it be physical, biological or social processes, complex systems exhibit dynamics that are exceedingly difficult to understand or predict from underlying principles. Here we report a striking correspondence between the excitation dynamics of a laser driven gas of Rydberg atoms and the spreading of diseases, which in turn opens up a controllable platform for studying non-equilibrium dynamics on complex networks. The competition between facilitated excitation and spontaneous decay results in sub-exponential growth of the excitation number, which is empirically observed in real epidemics. Based on this we develop a quantitative microscopic susceptible-infected-susceptible model which links the growth and final excitation density to the dynamics of an emergent heterogeneous network and rare active region effects associated to an extended Griffiths phase. This provides physical insights into the nature of non-equilibrium criticality in driven many-body systems and the mechanisms leading to non-universal power-laws in the dynamics of complex systems.


2005 ◽  
Vol 72 (21) ◽  
Author(s):  
Mitsuharu Higashiguchi ◽  
Kenya Shimada ◽  
Keisuke Nishiura ◽  
Xiaoyu Cui ◽  
Hirofumi Namatame ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Fuyang Zhou ◽  
Yizhi Qu ◽  
Junwen Gao ◽  
Yulong Ma ◽  
Yong Wu ◽  
...  

AbstractAn ion embedded in warm/hot dense plasmas will greatly alter its microscopic structure and dynamics, as well as the macroscopic radiation transport properties of the plasmas, due to complicated many-body interactions with surrounding particles. Accurate theoretically modeling of such kind of quantum many-body interactions is essential but very challenging. In this work, we propose an atomic-state-dependent screening model for treating the plasmas with a wide range of temperatures and densities, in which the contributions of three-body recombination processes are included. We show that the electron distributions around an ion are strongly correlated with the ionic state studied due to the contributions of three-body recombination processes. The feasibility and validation of the proposed model are demonstrated by reproducing the experimental result of the line-shift of hot-dense plasmas as well as the classical molecular dynamic simulations of moderately coupled ultra-cold neutral plasmas. Our work opens a promising way to treat the screening effect of hot and warm dense plasma, which is a bottleneck of those extensive studies in high-energy-density physics, such as atomic processes in plasma, plasma spectra and radiation transport properties, among others.


Sign in / Sign up

Export Citation Format

Share Document