scholarly journals The NUNAtak Ice Thinning (NUNAIT) Calculator for Cosmonuclide Elevation Profiles

Author(s):  
Ángel Rodés

Cosmogenic nuclides are widely used to constrain the landscape history of glaciated areas. At nunataks in continental polar regions with extremely arid conditions, cosmogenic nuclides are often the only method available to date the ice thinning history of the glacier. However, the amount of cosmogenic isotopes accumulated at the surface of nunataks depends not only on the length of time that rock has been exposed since the last deglaciation, but on the full history of the surface, including muon production under ice, exposure during previous interglacials, subaerial weathering rate, glacial erosion rate, and uplift rate of the nunatak. The NUNAtak Ice Thinning model (NUNAIT) simulates the cosmonuclide accumulation on vertical profiles, fitting the aforementioned parameters to a set of multi-isotope apparent ages from samples taken at different elevations over the ice-sheet surface. The NUNAIT calculator is an easy-to-use tool that constrains parameters that describe the geological history of a nunatak from a set of surface exposure ages.

Geosciences ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 362
Author(s):  
Ángel Rodés

Cosmogenic nuclides are widely used to constrain the landscape history of glaciated areas. At nunataks in continental polar regions with extremely arid conditions, cosmogenic nuclides are often the only method available to date the ice thinning history of the glacier. However, the amount of cosmogenic isotopes accumulated at the surface of nunataks depends not only on the length of time that rock has been exposed since the last deglaciation but also on the full history of the surface, including muon production under ice, exposure during previous interglacials, subaerial weathering rate, glacial erosion rate, and uplift rate of the nunatak. The NUNAtak Ice Thinning model (NUNAIT) simulates the cosmonuclide accumulation on vertical profiles, fitting the aforementioned parameters to a set of multi-isotope apparent ages from samples taken at different elevations over the ice-sheet surface. The NUNAIT calculator is an easy-to-use tool that constrains parameters that describe the geological history of a nunatak from a set of surface exposure ages.


2010 ◽  
Vol 36 (-1) ◽  
pp. 47-54 ◽  
Author(s):  
Anto Raukas ◽  
Wojciech Stankowski ◽  
Vitālijs Zelčs ◽  
Petras Šinkunas

Chronology of the Last Deglaciation in the Southeastern Baltic Region on the Basis of Recent OSL DatesThe study of the deglaciation chronology in the south-eastern Baltic Region belonging to the outer zone of the last Pleistocene glaciation has a long history. The Finnish investigator H. Hausen (1913) who worked in the north-western portion of the East-European Plain at the beginning of the 20thcentury was the first to attempt a reconstruction of the course of glacial retreat during the last glaciation. At that time investigators had no physical dating methods and the time scale based on varvometric method, introduced by the Swedish geologist G. de Geer (1912) who divided the deglaciation history of Scandinavia into Daniglacial, Gotiglacial and Finiglacial, each of which had different palaeoglaciological conditions. During last decades different dating methods, including14C, ESR, luminescence methods and10Be techniques have been used, but they could not help essentially improve the existing stratigraphical charts and many problems of topical interest in the history of deglaciation have not been solved yet. During last years the first two authors have studied the suitability of OSL method for the geochronological purposes, paying the most attention to the waterlaid sediments. In the first step they have found the most promising genetical varieties of glaciofluvial sediments (glaciofluvial deltas and sandurs) and in this paper they widened the study area to all three Baltic states with close cooperation with Latvian and Lithuanian colleagues. The obtained results demonstrated, that not all mineral grains in the uppermost glaciofluvial and glaciolacustrine sediments were fully bleached during the last deglaciation. Probably the older sediments also influenced to the luminescence results. It means, that stratigraphic conclusions based on single dates or their small sets are inadmissible and in each case luminiscence dating requires a verification using other methods.


2017 ◽  
Vol 43 (2) ◽  
pp. 629 ◽  
Author(s):  
V. Jomelli ◽  
L. Martin ◽  
P. H. Blard ◽  
V. Favier ◽  
M. Vuillé ◽  
...  

The sensitivity of tropical glaciers to paleoclimatic conditions that prevailed during the Antarctic cold reversal (ACR, ca. 14.5-12.9 ka) has been the subject of a wide debate. In 2014 a paper suggested that tropical glaciers responded very sensitively to the changing climate during the ACR (Jomelli et al., 2014). In this study, we reexamine the conclusions from this study by recalculating previous chronologies based on 226 10Be and 14 3He ages respectively, and using the most up-to date production rates for these cosmogenic nuclides in the Tropical Andes. 53 moraines from 25 glaciers were selected from the previous analysis provided by Jomelli et al. (2014) located in Colombia, Peru and Bolivia. We then focused on two distinct calculations. First we considered the oldest moraine and its uncertainty for every glacier representing the preserved evidence of the maximum glacier extents during the last deglaciation period, and binned the results into 5 distinct periods encompassing the Antarctic cold reversal and Younger Dryas (YD) chronozones: pre-ACR, ACR, ACR-YD, YD and post-YD respectively. Results revealed a predominance of pre-ACR and ACR ages, accounting for 60% of the glaciers. Second we counted the number of moraines per glacier according to the different groups. 21 moraines (40%) of the selected glaciers belong to the pre-ACR-ACR chronozones while 3 moraines only (5%) were dated to the YD and YD-Holocene groups. The rest was assigned to the ACR-YD. These results suggest that moraine records are a very good proxy to document the ACR signal in the Tropical Andes.


2021 ◽  
Vol 15 (7) ◽  
pp. 3329-3354
Author(s):  
Trevor R. Hillebrand ◽  
John O. Stone ◽  
Michelle Koutnik ◽  
Courtney King ◽  
Howard Conway ◽  
...  

Abstract. Chronologies of glacier deposits in the Transantarctic Mountains provide important constraints on grounding-line retreat during the last deglaciation in the Ross Sea. However, between Beardmore Glacier and Ross Island – a distance of some 600 km – the existing chronologies are generally sparse and far from the modern grounding line, leaving the past dynamics of this vast region largely unconstrained. We present exposure ages of glacial deposits at three locations alongside the Darwin–Hatherton Glacier System – including within 10 km of the modern grounding line – that record several hundred meters of Late Pleistocene to Early Holocene thickening relative to present. As the ice sheet grounding line in the Ross Sea retreated, Hatherton Glacier thinned steadily from about 9 until about 3 ka. Our data are equivocal about the maximum thickness and Mid-Holocene to Early Holocene history at the mouth of Darwin Glacier, allowing for two conflicting deglaciation scenarios: (1) ∼500 m of thinning from 9 to 3 ka, similar to Hatherton Glacier, or (2) ∼950 m of thinning, with a rapid pulse of ∼600 m thinning at around 5 ka. We test these two scenarios using a 1.5-dimensional flowband model, forced by ice thickness changes at the mouth of Darwin Glacier and evaluated by fit to the chronology of deposits at Hatherton Glacier. The constraints from Hatherton Glacier are consistent with the interpretation that the mouth of Darwin Glacier thinned steadily by ∼500 m from 9 to 3 ka. Rapid pulses of thinning at the mouth of Darwin Glacier are ruled out by the data at Hatherton Glacier. This contrasts with some of the available records from the mouths of other outlet glaciers in the Transantarctic Mountains, many of which thinned by hundreds of meters over roughly a 1000-year period in the Early Holocene. The deglaciation histories of Darwin and Hatherton glaciers are best matched by a steady decrease in catchment area through the Holocene, suggesting that Byrd and/or Mulock glaciers may have captured roughly half of the catchment area of Darwin and Hatherton glaciers during the last deglaciation. An ensemble of three-dimensional ice sheet model simulations suggest that Darwin and Hatherton glaciers are strongly buttressed by convergent flow with ice from neighboring Byrd and Mulock glaciers, and by lateral drag past Minna Bluff, which could have led to a pattern of retreat distinct from other glaciers throughout the Transantarctic Mountains.


Author(s):  
Rainer Wieler

Cosmogenic nuclides are produced by the interaction of energetic elementary particles of galactic (or solar) cosmic radiation and their secondaries with atomic nuclei in extraterrestrial or terrestrial material. Cosmogenic nuclides usually are observable only for some noble gas isotopes, whose natural abundances in the targets of interest are exceedingly low; some radioactive isotopes with half-lives mostly in the million-year range; and a few stable nuclides of elements, such as Gd and Sm, whose abundance is sizably modified by reactions with low energy secondary cosmic ray neutrons. In solid matter, the mean attenuation length of galactic cosmic ray protons is on the order of 50 cm. Therefore, cosmogenic nuclides are a major tool in studying the history of small objects in space and of matter near the surfaces of larger parent bodies. A classical application is to measure “exposure ages” of meteorites, namely the time they spent as a small body in interplanetary space. In some cases, also the previous history of the future meteorite in its parent-body regolith can be constrained. Such information helps to understand delivery mechanisms of meteorites from their parent asteroids or parent planets and to constrain the number of ejection events responsible for the collected meteorites. Cosmogenic nuclides in lunar samples from known depths of up to ~2 m serve to study the deposition and mixing history of the lunar regolith over hundreds of millions of years, as well as to calibrate nuclide production models. Present and future sample return missions rely on cosmogenic nuclide measurements as important tools to constrain the sample’s exposure history or loss rates of their parent body surfaces to space. The first data from cosmogenic noble gas isotopes measured on the surface of Mars demonstrate that the exposure and erosional history of planetary bodies can be obtained by in-situ analyses. For the foreseeable future, exposure ages of presolar grains in meteorites are presumably the only means to quantitatively constrain their presolar history. In some cases, irradiation effects of energetic particles from the early sun can be detected in early solar system condensates, confirming that the early sun was likely much more active than today, as expected from observations of young stars. The ever-increasing precision of isotope analyses also reveals tiny isotopic anomalies induced by cosmic-ray effects in several elements of interest in cosmochemistry, which need to be recognized and corrected for. Cosmogenic nuclide studies rely on the knowledge of their production rates, which depend on the elemental composition of a sample and its “shielding” during irradiation, that is, its position within an irradiated object and for meteorites their preatmospheric size. The physics of cosmogenic nuclide production is basically well understood and has led to sophisticated production models. They are most successful if a sample’s shielding can be constrained by the analyses of several cosmogenic nuclides with different depth dependencies of their production rates. Cosmogenic nuclides are also an important tool in Earth Sciences. The foremost example is 14C produced in the atmosphere and incorporated into organic material, which is used for dating. Cosmogenic radionuclides and noble gases produced in-situ in near surface samples, mostly by secondary cosmic-ray neutrons, are an important tool in quantitative geomorphology and related fields.


2017 ◽  
Author(s):  
Maureen H. Walczak ◽  
◽  
Heather D. Bervid ◽  
Anders E. Carlson ◽  
Alyson N. Churchill ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document