scholarly journals Contrasitive Learning for 3D Point Clouds Classification and Shape Completion

Author(s):  
Danish Nazir ◽  
Muhammad Zeshan Afzal ◽  
Alain Pagani ◽  
Marcus Liwicki ◽  
Didier Stricker

In this paper, we present the idea of Self Supervised learning on the Shape Completion and Classification of point clouds. Most 3D shape completion pipelines utilize autoencoders to extract features from point clouds used in downstream tasks such as Classification, Segmentation, Detection, and other related applications. Our idea is to add Contrastive Learning into Auto-Encoders to learn both global and local feature representations of point clouds. We use a combination of Triplet Loss and Chamfer distance to learn global and local feature representations. To evaluate the performance of embeddings for Classification, we utilize the PointNet classifier. We also extend the number of classes to evaluate our model from 4 to 10 to show the generalization ability of learned features. Based on our results, embedding generated from the Contrastive autoencoder enhances Shape Completion and Classification performance from 84.2% to 84.9% of point clouds achieving the state-of-the-art results with 10 classes.

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7392
Author(s):  
Danish Nazir ◽  
Muhammad Zeshan Afzal ◽  
Alain Pagani ◽  
Marcus Liwicki ◽  
Didier Stricker

In this paper, we present the idea of Self Supervised learning on the shape completion and classification of point clouds. Most 3D shape completion pipelines utilize AutoEncoders to extract features from point clouds used in downstream tasks such as classification, segmentation, detection, and other related applications. Our idea is to add contrastive learning into AutoEncoders to encourage global feature learning of the point cloud classes. It is performed by optimizing triplet loss. Furthermore, local feature representations learning of point cloud is performed by adding the Chamfer distance function. To evaluate the performance of our approach, we utilize the PointNet classifier. We also extend the number of classes for evaluation from 4 to 10 to show the generalization ability of the learned features. Based on our results, embeddings generated from the contrastive AutoEncoder enhances shape completion and classification performance from 84.2% to 84.9% of point clouds achieving the state-of-the-art results with 10 classes.


2021 ◽  
Vol 13 (15) ◽  
pp. 3021
Author(s):  
Bufan Zhao ◽  
Xianghong Hua ◽  
Kegen Yu ◽  
Xiaoxing He ◽  
Weixing Xue ◽  
...  

Urban object segmentation and classification tasks are critical data processing steps in scene understanding, intelligent vehicles and 3D high-precision maps. Semantic segmentation of 3D point clouds is the foundational step in object recognition. To identify the intersecting objects and improve the accuracy of classification, this paper proposes a segment-based classification method for 3D point clouds. This method firstly divides points into multi-scale supervoxels and groups them by proposed inverse node graph (IN-Graph) construction, which does not need to define prior information about the node, it divides supervoxels by judging the connection state of edges between them. This method reaches minimum global energy by graph cutting, obtains the structural segments as completely as possible, and retains boundaries at the same time. Then, the random forest classifier is utilized for supervised classification. To deal with the mislabeling of scattered fragments, higher-order CRF with small-label cluster optimization is proposed to refine the classification results. Experiments were carried out on mobile laser scan (MLS) point dataset and terrestrial laser scan (TLS) points dataset, and the results show that overall accuracies of 97.57% and 96.39% were obtained in the two datasets. The boundaries of objects were retained well, and the method achieved a good result in the classification of cars and motorcycles. More experimental analyses have verified the advantages of the proposed method and proved the practicability and versatility of the method.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 653
Author(s):  
Ruihua Zhang ◽  
Fan Yang ◽  
Yan Luo ◽  
Jianyi Liu ◽  
Jinbin Li ◽  
...  

Thorax disease classification is a challenging task due to complex pathologies and subtle texture changes, etc. It has been extensively studied for years largely because of its wide application in computer-aided diagnosis. Most existing methods directly learn global feature representations from whole Chest X-ray (CXR) images, without considering in depth the richer visual cues lying around informative local regions. Thus, these methods often produce sub-optimal thorax disease classification performance because they ignore the very informative pathological changes around organs. In this paper, we propose a novel Part-Aware Mask-Guided Attention Network (PMGAN) that learns complementary global and local feature representations from all-organ region and multiple single-organ regions simultaneously for thorax disease classification. Specifically, multiple innovative soft attention modules are designed to progressively guide feature learning toward the global informative regions of whole CXR image. A mask-guided attention module is designed to further search for informative regions and visual cues within the all-organ or single-organ images, where attention is elegantly regularized by automatically generated organ masks and without introducing computation during the inference stage. In addition, a multi-task learning strategy is designed, which effectively maximizes the learning of complementary local and global representations. The proposed PMGAN has been evaluated on the ChestX-ray14 dataset and the experimental results demonstrate its superior thorax disease classification performance against the state-of-the-art methods.


Author(s):  
E. Grilli ◽  
E. M. Farella ◽  
A. Torresani ◽  
F. Remondino

<p><strong>Abstract.</strong> In the last years, the application of artificial intelligence (Machine Learning and Deep Learning methods) for the classification of 3D point clouds has become an important task in modern 3D documentation and modelling applications. The identification of proper geometric and radiometric features becomes fundamental to classify 2D/3D data correctly. While many studies have been conducted in the geospatial field, the cultural heritage sector is still partly unexplored. In this paper we analyse the efficacy of the geometric covariance features as a support for the classification of Cultural Heritage point clouds. To analyse the impact of the different features calculated on spherical neighbourhoods at various radius sizes, we present results obtained on four different heritage case studies using different features configurations.</p>


2020 ◽  
Vol 12 (3) ◽  
pp. 543 ◽  
Author(s):  
Małgorzata Jarząbek-Rychard ◽  
Dong Lin ◽  
Hans-Gerd Maas

Targeted energy management and control is becoming an increasing concern in the building sector. Automatic analyses of thermal data, which minimize the subjectivity of the assessment and allow for large-scale inspections, are therefore of high interest. In this study, we propose an approach for a supervised extraction of façade openings (windows and doors) from photogrammetric 3D point clouds attributed to RGB and thermal infrared (TIR) information. The novelty of the proposed approach is in the combination of thermal information with other available characteristics of data for a classification performed directly in 3D space. Images acquired in visible and thermal infrared spectra serve as input data for the camera pose estimation and the reconstruction of 3D scene geometry. To investigate the relevance of different information types to the classification performance, a Random Forest algorithm is applied to various sets of computed features. The best feature combination is then used as an input for a Conditional Random Field that enables us to incorporate contextual information and consider the interaction between the points. The evaluation executed on a per-point level shows that the fusion of all available information types together with context consideration allows us to extract objects with 90% completeness and 95% correctness. A respective assessment executed on a per-object level shows 97% completeness and 88% accuracy.


Perception ◽  
1994 ◽  
Vol 23 (5) ◽  
pp. 489-504 ◽  
Author(s):  
Ruth Kimchi

A distinction has previously been proposed between global properties, defined by their position in the hierarchical structure of the stimulus, and wholistic/configural properties defined as a function of interrelations among component parts. The processing consequences of this distinction were examined in five experiments. In experiments 1–4 configural properties (closure and intersection) were pitted against component properties (line orientation and direction of curvature) and the results showed that discrimination and classification performance was dominated by the configural properties. In experiment 5 the relative perceptual dominance of type of property (configural/nonconfigural) and level of pattern structure (global/local) was examined. The results showed that classifications based on the configural property of closure were not affected at all by the level of globality at which this property varied. Global advantage was observed only with classifications based on line orientation. Taken together, the present results suggest that configural properties dominate discrimination and classification of visual forms, whereas the perceptual advantage of the global level of structure depends critically on the type of properties present at the global and local levels. These findings are also discussed in relation to findings on texture perception, and it is suggested that the perceptual system may be characterized by a predisposition for configural properties.


2022 ◽  
Vol 41 (1) ◽  
pp. 1-21
Author(s):  
Chems-Eddine Himeur ◽  
Thibault Lejemble ◽  
Thomas Pellegrini ◽  
Mathias Paulin ◽  
Loic Barthe ◽  
...  

In recent years, Convolutional Neural Networks (CNN) have proven to be efficient analysis tools for processing point clouds, e.g., for reconstruction, segmentation, and classification. In this article, we focus on the classification of edges in point clouds, where both edges and their surrounding are described. We propose a new parameterization adding to each point a set of differential information on its surrounding shape reconstructed at different scales. These parameters, stored in a Scale-Space Matrix (SSM) , provide a well-suited information from which an adequate neural network can learn the description of edges and use it to efficiently detect them in acquired point clouds. After successfully applying a multi-scale CNN on SSMs for the efficient classification of edges and their neighborhood, we propose a new lightweight neural network architecture outperforming the CNN in learning time, processing time, and classification capabilities. Our architecture is compact, requires small learning sets, is very fast to train, and classifies millions of points in seconds.


Sign in / Sign up

Export Citation Format

Share Document