scholarly journals An Assessment of Storm Surge Risk in Coastal Communities in the Rio Grande Valley

Author(s):  
Dean Kyne

(1) Background: Cameron County, which is located in the Rio Grande Valley, holds historical records for storm surges with noticeable property damage, fatalities, and injuries; (2) Methods: using storm surge hazard datasets from the National Oceanic and Atlantic Agency (NOAA), and American Community Survey (ACS) 2019 datasets and Geographic Information System (GIS), the study estimates at-risk population and their socio-demographic attributes; (4) Conclusions: Estimated water levels of a storm surge could be reached up to 5 feet in category 1 event, 9 feet in category 2, 17 feet in category 3, and above 20 feet in category 4 and 5. In the category 5 event, there is an estimated 37% (159,659) of the total county’s population (434,294) will be under flooded water. Suggestions are made to better prepare and successfully evaluate.

2016 ◽  
Vol 11 (2) ◽  
pp. 274-284 ◽  
Author(s):  
Joel Challender ◽  

Hurricane Sandy caused critical damage to subterranean infrastructure in New York and also claimed 285 human lives across the Eastern Seaboard. The storm surge impact easily overwhelmed existing pumping systems, devastating power supply and paralyzing transport. Despite extensive preparations and pre-storm public information efforts, inundation and underground flooding caused causalities. The size of the disaster, sheer scope of damage and multifaceted response spanning the onset through to the recovery phase provides useful lessons for Japan, given its vulnerability to similar storm surges and flooding disasters, such as the Ise Bay Typhoon of 1959. Given this, a delegation composed of members of the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) and Researchers from Japan’s Universities and Academic Societies working in disaster prevention conducted two surveys in 2013 and 2014. This involved hearing from emergency management officers in New York, Washington D.C and coastal communities about their experiences evacuating vulnerable residents and protecting critical infrastructure. The author of this paper was a member of both delegations. Based on fieldwork from these joint surveys and other materials, this paper outlines the scope of the damage that a storm of Sandy’s size was capable of inflicting, and looks at lessons applicable to Japan for preventing similar damage to infrastructure and human life in future storm surge events, and discusses how New York is attempting to become a more resilient city in preparation for the next flooding or storm surge disaster.


1978 ◽  
Vol 1 (16) ◽  
pp. 58
Author(s):  
P.F. Hamblin

Storm surges in enclosed seas although generally not as large in amplitude as their oceanic counterparts are nonetheless of considerable importance when low lying shoreline profiles, shallow water depth, and favourable geographical orientation to storm winds occur together. High water may result in shoreline innundation and in enhanced shoreline erosion. Conversely low water levels are hazardous to navigation. The purpose of this paper is to discuss the problem of storm surge forecasting in enclosed basins with emphasis on automated operational procedures. In general, operational forecasting methods must be based on standard forecast parameters, require a minimum of computational effort in the preparation of the forecast, must be applicable to lakes of different geometry and to any point on the shore, and to be able to resolve water level changes on an hourly basis to 10 cm in the case of high water level excursions associated with large lakes and less than that for smaller lakes. Particular physical effects arising in lakes which make these constraints difficult to fulfill are the reflections of resurgences of water levels arising from lateral boundaries, the stability of the atmospheric boundary layer and the presence of such subsynoptic disturbances as squall lines and travelling pressure jumps.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1559
Author(s):  
Halina Kowalewska-Kalkowska

The Odra River mouth area is a region of the Southern Baltic coastal zone especially prone to the influence of storm surges. In the present study, the height and extent of the Baltic storm surges, and temporal offsets of the respective maximum water level occurrences in the Odra River mouth area were explored using cross-correlation, cluster analysis and principal component analysis. The analyses were based on hourly water level readings retrieved from water gauging stations located along the lower Odra reaches and at the coasts of the Szczecin Lagoon and the Pomeranian Bay during storm surge years 2008/2009–2019/2020. The analysis of mutual relationships between water levels during storm surges indicated that the extent of marine influence on the lower Odra River and within the Szczecin Lagoon was variable during the studied surge events, and dependent on meteorological conditions (the strongest during the sustained occurrence of wind blowing from the northern sector), discharge from the Odra River catchment (the strongest at low discharge), ice conditions on the lower Odra (suppressing the storm surge propagation upstream), and general sea level in the Pomeranian Bay (stronger at high sea levels). The strongest correlation between sea levels at Świnoujście and water levels in the Szczecin Lagoon and the lower Odra was found at a 6–7 h offset. The extent of storm surges usually reached 100 km up the lower Odra channels, less frequently reaching 130 km away from the sea.


2021 ◽  
Author(s):  
Davide Tognin ◽  
Andrea D'Alpaos ◽  
Marco Marani ◽  
Luca Carniello

<p>Coastal wetlands lie at the interface between submerged and emerged environments and therefore represent unique yet delicate ecosystems. Their existence, resulting from complex interactions between hydrodynamics and sediment dynamics, is challenged by increasing rates of sea-level rise, lowered fluvial sediment input as well as an increasing anthropogenic pressure. The future survival of these peculiar morphologies is becoming even more complicated, because of the construction and planning of coastal defence structures designed to protect urban areas from flooding. Important examples are the flood protection systems built to protect New Orleans (USA), the river Scheldt Estuary (The Netherlands) and Venice (Italy). In this context, understanding the physical processes on which coastal marshes are grounded and how engineering measures can alter them is of extreme importance in order to plan conservation interventions.</p><p>To understand marsh sedimentation dynamics in flood-regulated environments, we investigated through field observations and modelling the effect of the storm-surge barrier designed to protect the city of Venice, the so-called Mo.S.E. system, which has in fact become operational since October 2020.</p><p>Sedimentation measurements in different salt marshes of the Venice lagoon carried out in the period October 2018-October 2020 show that more than 70% of yearly sedimentation accumulates during storm-surge conditions, despite their short duration. Moreover, the sedimentation rate displays a highly non-linear increase with marsh inundation intensity, due to the interplay between higher water levels and greater suspended sediment concentration. Barrier operations during storm surges to avoid flooding of urban areas will reduce water levels and marsh inundation. Therefore, we computed sedimentation in a flood-regulated scenario for the same observation period, using the relation we obtained between tidal forcing and sedimentation rate. Our results show that some occasional closures during intense storm surges (70 hours/year on average) suffice to reduce the yearly sedimentation of the same order of magnitude of the relative sea-level rise rate experienced by the Venice lagoon during the last century (2.5 mm/y).</p><p>We conclude that storm-surge barrier operations can dangerously reduce salt-marsh vertical accretion rate, thus challenging wetland survival in face of increasing sea-level rise.</p>


10.29007/hrlw ◽  
2018 ◽  
Author(s):  
Lara Santos ◽  
Mariana Gomes ◽  
Luis Vieira ◽  
José Pinho ◽  
José Antunes Do Carmo

Coastal zones face severe weaknesses and high-risk situations due to coastal threats like erosion and storms and due to an increasing intensive occupation. Tropical storms events can contribute to the occurrence of these situations, by causing storm surges with high water levels and, consequently, episodes of waves overtopping and coastal flooding. This work aims to describe a methodology to estimate the storm surge occurrences in the Portuguese coastal zone, recurring to historical tropical storms data that occurred in the vicinity of Portugal and to numerical modeling of its characteristics. Delft3D software together with DelfDashboard tools were applied for the numerical modelling. An automatic generation procedure of storms was implemented based on the few available historical storms data characteristics. Obtained results allows to characterize storm surges along the Portuguese coast, identifying the most vulnerable areas and, consequently contributing for its proper planning and management.


MAUSAM ◽  
2021 ◽  
Vol 48 (4) ◽  
pp. 587-594
Author(s):  
WANG XIUQIN ◽  
WANG JINGYONG

In the present paper the maximum storm surge elevations with certain return years were calculated by using a joint probability method. Based on the analyses of the typhoons which, affected coastal zone of Guangdong Province in history, a group of model typhoons was established. A number of parameters, which described the typhoons, were selected. The data of each parameter I was graded into a few sub-groups according to their values, and this was done in accordance with the historical observations. The probability of each value of the parameters was calculated based on the historical records. The probability of a typhoon with a group of values of parameters could be calculated. Simulation results of the storm surges caused by the above model typhoons with their probabilities were analysed statistically. Thus an accumulated probability curve and maximum elevations with certain return years were obtained. A number of spots was selected. At some of the spots there are tidal stations and at the others there are none. The maximum elevations with certain return years at the spots were calculated and the results were found satisfactory. By using this method all the meteorological and hydrological data, which were available, can be fully utilized. This method is most suitable for calculating the  maximum elevations at a place where there is no tidal station or at many places simultaneously.    


Author(s):  
Wen-Cheng Liu ◽  
Wei-Bo Chen ◽  
Lee-Yaw Lin

A typhoon-induced storm surge is considered one of the most severe coastal disasters in Taiwan. However, the combination of the storm surge and the astronomical tide called the storm tide can actually cause extreme flooding in coastal areas. This study implemented a two-dimensional hydrodynamic model to account for the interaction between tides and storm surges on the coast of Taiwan. The model was validated with observed water levels at Sauo Fish Port, Hualien Port, and Chenggong Fish Port under different historical typhoon events. The model results are in reasonable agreement with the measured data. The validated model was then used to evaluate the effects of the typhoon's intensity, bathymetric change, and the combination of the typhoon’s intensity and bathymetric change on the maximum storm tide and its distribution along the east coast of Taiwan. The results indicated that the maximum storm tide rises to 1.92 m under a typhoon with an intensity of a 100-year return period. The maximum storm tide increased from a baseline of 1.26 m to 2.63 m for a 90% bathymetric rise at Sauo Fish Port under the conditions of Typhoon Jangmi (2008). The combination of the intensity of a typhoon with a 100-year return period and a 90% bathymetric rise will result in a maximum storm tide exceeding 4 m, 2 m, and 3 m at Sauo Fish Port, Hualien Port, and Chenggong Fish Port, respectively. We also found that the distribution of the maximum storm tide on the east coast of Taiwan can expand significantly subject to the bathymetric rise.


2011 ◽  
Vol 1 (32) ◽  
pp. 43 ◽  
Author(s):  
Gerald Herrling ◽  
Heiko Knaack ◽  
Ralf Kaiser ◽  
Hanz Dieter Niemeyer

In the Ems-Dollard estuary at the southern North Sea coast a revaluation of design water levels along the German dykes has become necessary, since the safety margin for sea level rise was increased by 25 cm due to a decision of the Lower Saxon Ministry for Environment and Climate Protection. The upstream part of the estuary is protected against high storm surges by a storm surge barrier. The closure of the barrier effects downstream surge water levels due to partial reflection. Deterministic-mathematical modeling is applied to evaluate design water levels and design wave run-up. Three severe storm surge events have been hindcasted by a cascade of three hierarchical models from the Continental Shelf over the German Bight into the area of interest. The models are forced by non-stationary and spatially varying data of atmospheric pressure, wind velocities and directions available of meteorological model investigations. The verification of the storm surge model with water level observations yields good agreements. With respect to legal boundary conditions, the single-value-method is applied to determine the highest expected high water level at Emden. Starting from this target water level, the wind velocities in the meteorological boundary conditions are increased with the aim to increase the surge level at the coast and to match the predetermined design water level at Emden. The responding water levels in the Ems-Dollard estuary assign the new design water levels.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3538
Author(s):  
Andre de Souza de Lima ◽  
Arslaan Khalid ◽  
Tyler Will Miesse ◽  
Felicio Cassalho ◽  
Celso Ferreira ◽  
...  

The Southern Brazilian Coast is highly susceptible to storm surges that often lead to coastal flooding and erosive processes, significantly impacting coastal communities. In addition, climate change is expected to result in expressive increases in wave heights due to more intense and frequent storms, which, in conjunction with sea-level rise (SLR), has the potential to exacerbate the impact of storm surges on coastal communities. The ability to predict and simulate such events provides a powerful tool for coastal risk reduction and adaptation. In this context, this study aims to investigate how accurately storm surge events can be simulated in the Southwest Atlantic Ocean employing the coupled ADCIRC+SWAN hydrodynamic and phase-averaged wave numerical modeling framework given the significant data scarcity constraints of the region. The model’s total water level (TWL) and significant wave height (Hs) outputs, driven by different sources of meteorological forcing, i.e., the Fifth Generation of ECMWF Atmospheric Reanalysis (ERA 5), the Climate Forecast System Version 2 (CFSv2), and the Global Forecast System (GFS), were validated for three recent storm events that affected the coast (2016, 2017, and 2019). In order to assess the potentially increasing storm surge impacts due to sea-level rise, a case study was implemented to locally evaluate the modeling approach using the most accurate model setup for two 2100 SLR projections (RCP 4.5 and 8.5). Despite a TWL underestimation in all sets of simulations, the CFSv2 model stood out as the most consistent meteorological forcing for the hindcasting of the storm surge and waves in the numerical model, with an RMSE range varying from 0.19 m to 0.37 m, and an RMSE of 0.56 m for Hs during the most significant event. ERA5 was highlighted as the second most accurate meteorological forcing, while adequately simulating the peak timings. The SLR study case demonstrated a possible increase of up to 82% in the TWL during the same event. Despite the limitations imposed by the lack of continuous and densely distributed observational data, as well as up to date topobathymetric datasets, the proposed framework was capable of expanding TWL and Hs information, previously available for a handful of gauge stations, to a spatially distributed and temporally unlimited scale. This more comprehensive understanding of such extreme events represents valuable knowledge for the potential implementation of more adequate coastal management and engineering practices for the Brazilian coastal zone, especially under changing climate conditions.


2020 ◽  
Author(s):  
Angel Amores ◽  
Marta Marcos ◽  
Diego S. Carrió ◽  
Lluís Gómez-Pujol

Abstract. The ocean component and coastal impacts of Storm Gloria, that hit the Western Mediterranean between January 20th and 23rd 2020 are investigated with a numerical simulation of the storm surges and wind-waves. Storm Gloria caused severe damages and beat several historical records such as significant wave height or 24-h accumulated precipitation. The storm surge developed along the eastern coasts of the Iberian Peninsula reached values up to 1 m, and were accompanied by wind-waves with significant wave height up to 8 m. Along the coasts of the Balearic Islands, the storm footprint was characterised by a negligible storm surge and the impacts were caused by large waves. The comparison to historical records reveals that Storm Gloria is one of the most intense among the events in the region during the last decades and that the waves direction was particularly unusual. Our simulation permits quantifying the role of the different forcings in generating the storm surge. Also, the high spatial grid resolution down to 30 m over the Ebro Delta, allows determining the extent of the flooding caused by the storm surge. We also simulate the overtopping caused by high wind waves that affected a rocky coast of high cliffs (~ 15 m) in the eastern coast of Mallorca Island.


Sign in / Sign up

Export Citation Format

Share Document