scholarly journals Storm-Surge Induced Water Level Changes in the Odra River Mouth Area (Southern Baltic Coast)

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1559
Author(s):  
Halina Kowalewska-Kalkowska

The Odra River mouth area is a region of the Southern Baltic coastal zone especially prone to the influence of storm surges. In the present study, the height and extent of the Baltic storm surges, and temporal offsets of the respective maximum water level occurrences in the Odra River mouth area were explored using cross-correlation, cluster analysis and principal component analysis. The analyses were based on hourly water level readings retrieved from water gauging stations located along the lower Odra reaches and at the coasts of the Szczecin Lagoon and the Pomeranian Bay during storm surge years 2008/2009–2019/2020. The analysis of mutual relationships between water levels during storm surges indicated that the extent of marine influence on the lower Odra River and within the Szczecin Lagoon was variable during the studied surge events, and dependent on meteorological conditions (the strongest during the sustained occurrence of wind blowing from the northern sector), discharge from the Odra River catchment (the strongest at low discharge), ice conditions on the lower Odra (suppressing the storm surge propagation upstream), and general sea level in the Pomeranian Bay (stronger at high sea levels). The strongest correlation between sea levels at Świnoujście and water levels in the Szczecin Lagoon and the lower Odra was found at a 6–7 h offset. The extent of storm surges usually reached 100 km up the lower Odra channels, less frequently reaching 130 km away from the sea.

Author(s):  
Bernard Wiśniewski ◽  
Halina Kowalewska-Kalkowska

Water level fluctuations in the Odra River mouth area in relation to passages of deep low-pressure systemsThe Odra River mouth area is affected by storm surges caused by passages of deep low-pressure systems over the Baltic Sea. The surges are the result of wind action and changes in atmospheric pressure at the sea surface. The two effects may be additive, in which both factors increase or decrease the sea level on the coast, or they may be non-additive, where one factor increases the sea level and the other decreases it. This paper discusses the role of the wind field and changes in atmospheric pressure in the duration and extent of storm surges in the Odra River mouth area.


Author(s):  
Andrzej Osadczuk ◽  
Stanisław Musielak ◽  
Ryszard Borówka

Why should the Odra River mouth area not be regarded as an estuary? A geologist's point of viewThe authors find no arguments that would justify application of the term "estuary" to the area of the Odra River discharge into the Baltic Sea. The physiography, geology, and hydrology of the Odra river mouth show that the area possesses many more characteristics typical of flow-through coastal lagoons than those of estuaries. Of key importance in this respect is the Szczecin Lagoon, an extensive, shallow water body separated from the open sea by a barrier intersected by three narrow and long straits. The lagoonal nature of the area is demonstrated also by its geological history.


2012 ◽  
Vol 1 (33) ◽  
pp. 53
Author(s):  
Leigh MacPherson ◽  
Ivan David Haigh ◽  
Matthew Mason ◽  
Sarath Wijeratne ◽  
Charitha Pattiaratchi ◽  
...  

The potential impacts of extreme water level events on our coasts are increasing as populations grow and sea levels rise. To better prepare for the future, coastal engineers and managers need accurate estimates of average exceedance probabilities for extreme water levels. In this paper, we estimate present day probabilities of extreme water levels around the entire coastline of Australia. Tides and storm surges generated by extra-tropical storms were included by creating a 61-year (1949-2009) hindcast of water levels using a high resolution depth averaged hydrodynamic model driven with meteorological data from a global reanalysis. Tropical cyclone-induced surges were included through numerical modelling of a database of synthetic tropical cyclones equivalent to 10,000 years of cyclone activity around Australia. Predicted water level data was analysed using extreme value theory to construct return period curves for both the water level hindcast and synthetic tropical cyclone modelling. These return period curves were then combined by taking the highest water level at each return period.


1978 ◽  
Vol 1 (16) ◽  
pp. 58
Author(s):  
P.F. Hamblin

Storm surges in enclosed seas although generally not as large in amplitude as their oceanic counterparts are nonetheless of considerable importance when low lying shoreline profiles, shallow water depth, and favourable geographical orientation to storm winds occur together. High water may result in shoreline innundation and in enhanced shoreline erosion. Conversely low water levels are hazardous to navigation. The purpose of this paper is to discuss the problem of storm surge forecasting in enclosed basins with emphasis on automated operational procedures. In general, operational forecasting methods must be based on standard forecast parameters, require a minimum of computational effort in the preparation of the forecast, must be applicable to lakes of different geometry and to any point on the shore, and to be able to resolve water level changes on an hourly basis to 10 cm in the case of high water level excursions associated with large lakes and less than that for smaller lakes. Particular physical effects arising in lakes which make these constraints difficult to fulfill are the reflections of resurgences of water levels arising from lateral boundaries, the stability of the atmospheric boundary layer and the presence of such subsynoptic disturbances as squall lines and travelling pressure jumps.


2011 ◽  
Vol 1 (32) ◽  
pp. 43 ◽  
Author(s):  
Gerald Herrling ◽  
Heiko Knaack ◽  
Ralf Kaiser ◽  
Hanz Dieter Niemeyer

In the Ems-Dollard estuary at the southern North Sea coast a revaluation of design water levels along the German dykes has become necessary, since the safety margin for sea level rise was increased by 25 cm due to a decision of the Lower Saxon Ministry for Environment and Climate Protection. The upstream part of the estuary is protected against high storm surges by a storm surge barrier. The closure of the barrier effects downstream surge water levels due to partial reflection. Deterministic-mathematical modeling is applied to evaluate design water levels and design wave run-up. Three severe storm surge events have been hindcasted by a cascade of three hierarchical models from the Continental Shelf over the German Bight into the area of interest. The models are forced by non-stationary and spatially varying data of atmospheric pressure, wind velocities and directions available of meteorological model investigations. The verification of the storm surge model with water level observations yields good agreements. With respect to legal boundary conditions, the single-value-method is applied to determine the highest expected high water level at Emden. Starting from this target water level, the wind velocities in the meteorological boundary conditions are increased with the aim to increase the surge level at the coast and to match the predetermined design water level at Emden. The responding water levels in the Ems-Dollard estuary assign the new design water levels.


2021 ◽  
Vol 21 (8) ◽  
pp. 2611-2631
Author(s):  
Sang-Guk Yum ◽  
Hsi-Hsien Wei ◽  
Sung-Hwan Jang

Abstract. Global warming, one of the most serious aspects of climate change, can be expected to cause rising sea levels. These have in turn been linked to unprecedentedly large typhoons that can cause flooding of low-lying land, coastal invasion, seawater flows into rivers and groundwater, rising river levels, and aberrant tides. To prevent typhoon-related loss of life and property damage, it is crucial to accurately estimate storm-surge risk. This study therefore develops a statistical model for estimating such surges' probability based on surge data pertaining to Typhoon Maemi, which struck South Korea in 2003. Specifically, estimation of non-exceedance probability models of the typhoon-related storm surge was achieved via clustered separated peaks-over-threshold simulation, while various distribution models were fitted to the empirical data for investigating the risk of storm surges reaching particular heights. To explore the non-exceedance probability of extreme storm surges caused by typhoons, a threshold algorithm with clustering methodology was applied. To enhance the accuracy of such non-exceedance probability, the surge data were separated into three different components: predicted water level, observed water level, and surge. Sea-level data from when Typhoon Maemi struck were collected from a tidal-gauge station in the city of Busan, which is vulnerable to typhoon-related disasters due to its geographical characteristics. Fréchet, gamma, log-normal, generalized Pareto, and Weibull distributions were fitted to the empirical surge data, and the researchers compared each one's performance at explaining the non-exceedance probability. This established that Weibull distribution was better than any of the other distributions for modelling Typhoon Maemi's peak total water level. Although this research was limited to one city on the Korean Peninsula and one extreme weather event, its approach could be used to reliably estimate non-exceedance probabilities in other regions where tidal-gauge data are available. In practical terms, the findings of this study and future ones adopting its methodology will provide a useful reference for designers of coastal infrastructure.


Author(s):  
Nguyen Ngoc Tien ◽  
Dinh Van Uu ◽  
Nguyen Tho Sao ◽  
Do Huy Cuong ◽  
Nguyen Trung Thanh ◽  
...  

Author(s):  
Yako Harada ◽  
Yukihisa Matsumoto ◽  
Kazuho Morishita ◽  
Nobuyuki Oonishi ◽  
Kazuyoshi Kihara ◽  
...  

The vertical telescopic breakwater(VTB), which is a new breakwater that permits the navigation of ships, remain at the bottom of the sea during calm and rise to the surface during tsunamis or storm surges. Kawai et al. (2017) and Arikawa et al. (2019) found that it is effective not only for swell waves, but also for long-period waves simulating tsunamis and storm surges by previous experiments and numerical analyses. However, there have been few studies on the performance of VTB by numerical calculations in actual ports using actual typhoons. In addition, sea levels and changes in characteristics of typhoon due to climate change are predicted to occur; hence, we are concerned about the damage in all quarters caused by storm surge inundation, especially at Tokyo. Therefore, in this study, we used hypothetical typhoons under worst-case scenarios and quantitatively evaluated the protection performance of VTB against hypothetical typhoons with different aperture rates of VTB in Tokyo Bay by the numerical simulation.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/qof5ixKqIiA


2011 ◽  
Vol 1 (32) ◽  
pp. 18
Author(s):  
Tomoya Shibayama

Field surveys were performed in the southwest of Bangladesh after cyclone Sidr in 2007 and in Yangon River Basin after Cyclone Nargis in Myanmar in 2008 in order to learn lessons out of severe disasters due to cyclones. Spatial distributions of inundation heights were measured around the most damaged areas. Both Bangladesh and Myanmar were severely damaged, but the preparedness against storm surge and the experiences were different. The resultant total losses in these two countries were significantly different. In Bangladesh, many people witnessed that storm surges inundated with bore-like waves. Counter measured against storm surges should account for the physical mechanisms for the development of such bore-like waves and possible damages due to such waves. Embankment showed significant roles to minimize the damage. Development of riverbanks especially around the river mouth is one of most essential counter-measures to be carried out in Bangladesh. Shelter functioned well to save significant number of lives in Bangladesh. But in Myanmar, there were few experiences on storm surge and no countermeasures such as shelters. These differences results the difference of losses. They were 4,232 including deaths and unknowns in Bangladesh but 138,373 in Myanmar.


Geosciences ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 3 ◽  
Author(s):  
Łukasz Maciąg ◽  
Urszula Rydzewska ◽  
Artur Skowronek ◽  
Sylwester Salwa

Small-sized ferruginous micronodules or pisolith nodules, frequently occurring in inland freshwater systems in moderate climate zones, are important indicators of groundwater level changes and early diagenetic processes, especially within the Pleistocene post-glacial sedimentary systems, including swamps, peatbogs, rivers, or lakes. Compared to the other geochemical environments, pisolith nodules are usually dominated by iron hydroxides and oxides. In most cases, described micronodules indicate high phosphatization, significant contribution of allogenic detrital components, and low manganese content. The major aim of the article is to present textural, geochemical, and mineralogical variability of pisolith nodules recovered from the Roztoka Odrzańska, Odra river mouth area, NW Poland. We describe genetical relations between different types of pisoliths and try to interpret the possible formation phenomena. Analyzed loose ferruginous micronodules were separated from the lacustrine silty-clayey sapropel muds and gyttja, later analyzed using optical microscopy, SEM-energy dispersive x-ray (EDX), and XRD methods. As a reference material, we use archival iron bog ores and geochemical data of different types of nodules. Additionally, we describe previously unknown siderite-rich nodules found in neighboring sites of the Dąbie Lake and the Szczecin Lagoon.


Sign in / Sign up

Export Citation Format

Share Document