scholarly journals TorchEsegeta: Framework for Interpretability and Explainability of Image-based Deep Learning Models

Author(s):  
Soumick Chatterjee ◽  
Arnab Das ◽  
Chirag Mandal ◽  
Budhaditya Mukhopadhyay ◽  
Manish Vipinraj ◽  
...  

Clinicians are often very sceptical about applying automatic image processing approaches, especially deep learning based methods, in practice. One main reason for this is the black-box nature of these approaches and the inherent problem of missing insights of the automatically derived decisions. In order to increase trust in these methods, this paper presents approaches that help to interpret and explain the results of deep learning algorithms by depicting the anatomical areas which influence the decision of the algorithm most. Moreover, this research presents a unified framework, TorchEsegeta, for applying various interpretability and explainability techniques for deep learning models and generate visual interpretations and explanations for clinicians to corroborate their clinical findings. In addition, this will aid in gaining confidence in such methods. The framework builds on existing interpretability and explainability techniques that are currently focusing on classification models, extending them to segmentation tasks. In addition, these methods have been adapted to 3D models for volumetric analysis. The proposed framework provides methods to quantitatively compare visual explanations using infidelity and sensitivity metrics. This framework can be used by data scientists to perform post-hoc interpretations and explanations of their models, develop more explainable tools and present the findings to clinicians to increase their faith in such models. The proposed framework was evaluated based on a use case scenario of vessel segmentation models trained on Time-of-fight (TOF) Magnetic Resonance Angiogram (MRA) images of the human brain. Quantitative and qualitative results of a comparative study of different models and interpretability methods are presented. Furthermore, this paper provides an extensive overview of several existing interpretability and explainability methods.

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5039
Author(s):  
Tae-Hyun Kim ◽  
Hye-Rin Kim ◽  
Yeong-Jun Cho

In this study, we present a framework for product quality inspection based on deep learning techniques. First, we categorize several deep learning models that can be applied to product inspection systems. In addition, we explain the steps for building a deep-learning-based inspection system in detail. Second, we address connection schemes that efficiently link deep learning models to product inspection systems. Finally, we propose an effective method that can maintain and enhance a product inspection system according to improvement goals of the existing product inspection systems. The proposed system is observed to possess good system maintenance and stability owing to the proposed methods. All the proposed methods are integrated into a unified framework and we provide detailed explanations of each proposed method. In order to verify the effectiveness of the proposed system, we compare and analyze the performance of the methods in various test scenarios. We expect that our study will provide useful guidelines to readers who desire to implement deep-learning-based systems for product inspection.


2021 ◽  
Author(s):  
Yidong Chai ◽  
Ruicheng Liang ◽  
Hongyi Zhu ◽  
Sagar Samtani ◽  
Meng Wang ◽  
...  

Deep learning models have significantly advanced various natural language processing tasks. However, they are strikingly vulnerable to adversarial text attacks, even in the black-box setting where no model knowledge is accessible to hackers. Such attacks are conducted with a two-phase framework: 1) a sensitivity estimation phase to evaluate each element’s sensitivity to the target model’s prediction, and 2) a perturbation execution phase to craft the adversarial examples based on estimated element sensitivity. This study explored the connections between the local post-hoc explainable methods for deep learning and black-box adversarial text attacks and proposed a novel eXplanation-based method for crafting Adversarial Text Attacks (XATA). XATA leverages local post-hoc explainable methods (e.g., LIME or SHAP) to measure input elements’ sensitivity and adopts the word replacement perturbation strategy to craft adversarial examples. We evaluated the attack performance of the proposed XATA on three commonly used text-based datasets: IMDB Movie Review, Yelp Reviews-Polarity, and Amazon Reviews-Polarity. The proposed XATA outperformed existing baselines in various target models, including LSTM, GRU, CNN, and BERT. Moreover, we found that improved local post-hoc explainable methods (e.g., SHAP) lead to more effective adversarial attacks. These findings showed that when researchers constantly advance the explainability of deep learning models with local post-hoc methods, they also provide hackers with weapons to craft more targeted and dangerous adversarial attacks.


2021 ◽  
Author(s):  
Yidong Chai ◽  
Ruicheng Liang ◽  
Hongyi Zhu ◽  
Sagar Samtani ◽  
Meng Wang ◽  
...  

Deep learning models have significantly advanced various natural language processing tasks. However, they are strikingly vulnerable to adversarial text attacks, even in the black-box setting where no model knowledge is accessible to hackers. Such attacks are conducted with a two-phase framework: 1) a sensitivity estimation phase to evaluate each element’s sensitivity to the target model’s prediction, and 2) a perturbation execution phase to craft the adversarial examples based on estimated element sensitivity. This study explored the connections between the local post-hoc explainable methods for deep learning and black-box adversarial text attacks and proposed a novel eXplanation-based method for crafting Adversarial Text Attacks (XATA). XATA leverages local post-hoc explainable methods (e.g., LIME or SHAP) to measure input elements’ sensitivity and adopts the word replacement perturbation strategy to craft adversarial examples. We evaluated the attack performance of the proposed XATA on three commonly used text-based datasets: IMDB Movie Review, Yelp Reviews-Polarity, and Amazon Reviews-Polarity. The proposed XATA outperformed existing baselines in various target models, including LSTM, GRU, CNN, and BERT. Moreover, we found that improved local post-hoc explainable methods (e.g., SHAP) lead to more effective adversarial attacks. These findings showed that when researchers constantly advance the explainability of deep learning models with local post-hoc methods, they also provide hackers with weapons to craft more targeted and dangerous adversarial attacks.


Author(s):  
Hangwei Qian ◽  
Sinno Jialin Pan ◽  
Bingshui Da ◽  
Chunyan Miao

Feature-engineering-based machine learning models and deep learning models have been explored for wearable-sensor-based human activity recognition. For both types of methods, one crucial research issue is how to extract proper features from the partitioned segments of multivariate sensor readings. Existing methods have different drawbacks: 1) feature-engineering-based methods are able to extract meaningful features, such as statistical or structural information underlying the segments, but usually require manual designs of features for different applications, which is time consuming, and 2) deep learning models are able to learn temporal and/or spatial features from the sensor data automatically, but fail to capture statistical information. In this paper, we propose a novel deep learning model to automatically learn meaningful features including statistical features, temporal features and spatial correlation features for activity recognition in a unified framework. Extensive experiments are conducted on four datasets to demonstrate the effectiveness of our proposed method compared with state-of-the-art baselines.


2020 ◽  
Vol 71 (7) ◽  
pp. 868-880
Author(s):  
Nguyen Hong-Quan ◽  
Nguyen Thuy-Binh ◽  
Tran Duc-Long ◽  
Le Thi-Lan

Along with the strong development of camera networks, a video analysis system has been become more and more popular and has been applied in various practical applications. In this paper, we focus on person re-identification (person ReID) task that is a crucial step of video analysis systems. The purpose of person ReID is to associate multiple images of a given person when moving in a non-overlapping camera network. Many efforts have been made to person ReID. However, most of studies on person ReID only deal with well-alignment bounding boxes which are detected manually and considered as the perfect inputs for person ReID. In fact, when building a fully automated person ReID system the quality of the two previous steps that are person detection and tracking may have a strong effect on the person ReID performance. The contribution of this paper are two-folds. First, a unified framework for person ReID based on deep learning models is proposed. In this framework, the coupling of a deep neural network for person detection and a deep-learning-based tracking method is used. Besides, features extracted from an improved ResNet architecture are proposed for person representation to achieve a higher ReID accuracy. Second, our self-built dataset is introduced and employed for evaluation of all three steps in the fully automated person ReID framework.


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


2019 ◽  
Author(s):  
Mohammad Rezaei ◽  
Yanjun Li ◽  
Xiaolin Li ◽  
Chenglong Li

<b>Introduction:</b> The ability to discriminate among ligands binding to the same protein target in terms of their relative binding affinity lies at the heart of structure-based drug design. Any improvement in the accuracy and reliability of binding affinity prediction methods decreases the discrepancy between experimental and computational results.<br><b>Objectives:</b> The primary objectives were to find the most relevant features affecting binding affinity prediction, least use of manual feature engineering, and improving the reliability of binding affinity prediction using efficient deep learning models by tuning the model hyperparameters.<br><b>Methods:</b> The binding site of target proteins was represented as a grid box around their bound ligand. Both binary and distance-dependent occupancies were examined for how an atom affects its neighbor voxels in this grid. A combination of different features including ANOLEA, ligand elements, and Arpeggio atom types were used to represent the input. An efficient convolutional neural network (CNN) architecture, DeepAtom, was developed, trained and tested on the PDBbind v2016 dataset. Additionally an extended benchmark dataset was compiled to train and evaluate the models.<br><b>Results: </b>The best DeepAtom model showed an improved accuracy in the binding affinity prediction on PDBbind core subset (Pearson’s R=0.83) and is better than the recent state-of-the-art models in this field. In addition when the DeepAtom model was trained on our proposed benchmark dataset, it yields higher correlation compared to the baseline which confirms the value of our model.<br><b>Conclusions:</b> The promising results for the predicted binding affinities is expected to pave the way for embedding deep learning models in virtual screening and rational drug design fields.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Ferdinand Filip ◽  
...  

This paper provides a state-of-the-art investigation of advances in data science in emerging economic applications. The analysis was performed on novel data science methods in four individual classes of deep learning models, hybrid deep learning models, hybrid machine learning, and ensemble models. Application domains include a wide and diverse range of economics research from the stock market, marketing, and e-commerce to corporate banking and cryptocurrency. Prisma method, a systematic literature review methodology, was used to ensure the quality of the survey. The findings reveal that the trends follow the advancement of hybrid models, which, based on the accuracy metric, outperform other learning algorithms. It is further expected that the trends will converge toward the advancements of sophisticated hybrid deep learning models.


Author(s):  
Yuejun Liu ◽  
Yifei Xu ◽  
Xiangzheng Meng ◽  
Xuguang Wang ◽  
Tianxu Bai

Background: Medical imaging plays an important role in the diagnosis of thyroid diseases. In the field of machine learning, multiple dimensional deep learning algorithms are widely used in image classification and recognition, and have achieved great success. Objective: The method based on multiple dimensional deep learning is employed for the auxiliary diagnosis of thyroid diseases based on SPECT images. The performances of different deep learning models are evaluated and compared. Methods: Thyroid SPECT images are collected with three types, they are hyperthyroidism, normal and hypothyroidism. In the pre-processing, the region of interest of thyroid is segmented and the amount of data sample is expanded. Four CNN models, including CNN, Inception, VGG16 and RNN, are used to evaluate deep learning methods. Results: Deep learning based methods have good classification performance, the accuracy is 92.9%-96.2%, AUC is 97.8%-99.6%. VGG16 model has the best performance, the accuracy is 96.2% and AUC is 99.6%. Especially, the VGG16 model with a changing learning rate works best. Conclusion: The standard CNN, Inception, VGG16, and RNN four deep learning models are efficient for the classification of thyroid diseases with SPECT images. The accuracy of the assisted diagnostic method based on deep learning is higher than that of other methods reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document