scholarly journals COMPOSITE OF CHITOSAN VANILIN / SULFONATED POLYSTYRENE AS POLYMER ELECTROLYTE MEMBRANES : CATIONIC EXCHANGE CAPACITY, SWELLING DEGREE AND THERMAL PROPERTIES

2016 ◽  
Vol 10 (2) ◽  
pp. 116
Author(s):  
Edi Pramono ◽  
Candra Purnawan ◽  
Yuniawan Hidayat ◽  
Jati Wulansari ◽  
Sayekti Wahyuningsih

Research on the preparation and characterization of sulfonated polystyrene (PST) /chitosan vanillin (KV) composite as electrolyte membranes has been conducted in order to investigate the effect of PST and KV composition  to its chemical and physical properties. Polystyrene was modified by sulfonation reaction to produces PST<strong>, </strong>meanwhile chitosan was modified by schift base reaction to produces KV. The composite membranes were prepared by casting method and were characterized in order to identify the functional groups contained in the composite, the cation exchange capacity (CEC), the Swelling Degree (SD), the thermal properties and the morphology. The peak of imine vibration in the FTIR spectrum indicates that the chitosan vanilin was succesfully synthesized. Meanwhile, the peak of sulfonate vibration indicates the product of sulfonation on polystyrene. The result of CEC analysis shows that the addition of sulfonate groups on polystyrene and the addition of phenolic groups on chitosan increase the CEC value. The increasing of PST and KV concentration in membrane enhance the CEC value. However, the increasing of PST concentration in membrane composition even decrease the Swelling Degree of membranes. Meanwhile, the increasing of KV concentration increase the swelling degree of membranes. Thermal analysis shows that the thermal decomposition of membranes occurs in three stages i.e. the dehydration of water molecules, the degradation of the subtituen groups and the plasticizer and the degradation of the back bone of chitosan and polystyrene.

2016 ◽  
Vol 10 (2) ◽  
pp. 116
Author(s):  
Edi Pramono ◽  
Candra Purnawan ◽  
Yuniawan Hidayat ◽  
Jati Wulansari ◽  
Sayekti Wahyuningsih

Research on the preparation and characterization of sulfonated polystyrene (PST) /chitosan vanillin (KV) composite as electrolyte membranes has been conducted in order to investigate the effect of PST and KV composition  to its chemical and physical properties. Polystyrene was modified by sulfonation reaction to produces PST<strong>, </strong>meanwhile chitosan was modified by schift base reaction to produces KV. The composite membranes were prepared by casting method and were characterized in order to identify the functional groups contained in the composite, the cation exchange capacity (CEC), the Swelling Degree (SD), the thermal properties and the morphology. The peak of imine vibration in the FTIR spectrum indicates that the chitosan vanilin was succesfully synthesized. Meanwhile, the peak of sulfonate vibration indicates the product of sulfonation on polystyrene. The result of CEC analysis shows that the addition of sulfonate groups on polystyrene and the addition of phenolic groups on chitosan increase the CEC value. The increasing of PST and KV concentration in membrane enhance the CEC value. However, the increasing of PST concentration in membrane composition even decrease the Swelling Degree of membranes. Meanwhile, the increasing of KV concentration increase the swelling degree of membranes. Thermal analysis shows that the thermal decomposition of membranes occurs in three stages i.e. the dehydration of water molecules, the degradation of the subtituen groups and the plasticizer and the degradation of the back bone of chitosan and polystyrene.


2012 ◽  
Vol 510 ◽  
pp. 757-761 ◽  
Author(s):  
Shu’e Duan ◽  
Yun Hui Zhai ◽  
Ying Juan Qu

In this paper a novel colorless and salt-tolerant silver-histidine complex doped montmorillonite (Na-MMT) antibacterial agent (SHMMT) power was synthesized by ion exchange reaction using silver-histidine complex ion [Ag (his)] + as precursor, and characterized by atomic absorption spectrophotometer (AAS) and power X-ray diffraction (XRD). The antibacterial activities against Pseudoalteromonas carrageenovora were examined by a modified broth dilution test and the plate counting method. The salt-tolerant property was determined by the antibacterial activities of the sea water soaked SHMMT. The results showed that the Ag loading amount of SHMMT powder reached 1.7mmol/g, far more than the cationic exchange capacity (CEC) of Na-MMT. SHMMT powder had high bacterial activity eventhough it was soaked in the sea water for 30 days. 1


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 914 ◽  
Author(s):  
Lucia Mazzapioda ◽  
Stefania Panero ◽  
Maria Assunta Navarra

Nafion composite membranes, containing different amounts of mesoporous sulfated titanium oxide (TiO2-SO4) were prepared by solvent-casting and tested in proton exchange membrane fuel cells (PEMFCs), operating at very low humidification levels. The TiO2-SO4 additive was originally synthesized by a sol-gel method and characterized through x-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and ion exchange capacity (IEC). Peculiar properties of the composite membranes, such as the thermal transitions and ion exchange capacity, were investigated and here discussed. When used as an electrolyte in the fuel cell, the composite membrane guaranteed an improvement with respect to bare Nafion systems at 30% relative humidity and 110 °C, exhibiting higher power and current densities.


2018 ◽  
Vol 912 ◽  
pp. 263-268
Author(s):  
Rochélia Silva Souza Cunha ◽  
Joseane Damasceno Mota ◽  
Mariaugusta Ferreira Mota ◽  
Meiry Gláucia Freire Rodrigues ◽  
Fabricio Machado

The latest technologies require materials with combination of properties that are not usually found in conventional materials. Organic-inorganic hybrid materials emerge as alternatives to the synthesis of low cost new functional materials. The constituent polymer-clay nanocomposites are intended effectively for the treatment of oily effluents. The removal of oily effluents was evaluated using composite membranes with different nanocomposite percentages, consisting of a mineral clay BrasgelTM smaller than 2 μm and ultra high molecular weight polyethylene. The sample of clay was characterized by X-Ray Diffraction (XRD) and Cation Exchange Capacity (CEC), while the membranes by scanning electron microscope (SEM). The produced composite membranes efficiencies were evaluated by continuous flow for 1 hour. The results clearly confirmed that membranes incorporated with a higher percentage of nanocomposites achieved greater stability and less time as assessed in water flow.


2019 ◽  
Vol 28 (7) ◽  
pp. 492-501
Author(s):  
Sivasubramanian Gandhimathi ◽  
Hariharasubramanian Krishnan ◽  
Deivanayagam Paradesi

The design and development of proton conducting polymer electrolyte membranes from a linear constituent, sulfonated poly (ether ether ketone) (SPEEK), and inorganic additive, niobium oxide (NBO), have been achieved. The degree of sulfonation of SPEEK was measured by back titration method and found to be 57%. The physicochemical properties such as water uptake ability, ion-exchange capacity, swelling ratio, proton conductivity, and thermal stability of the prepared polymer nanocomposite membranes were studied in detail. The distribution of NBO throughout the polymer matrix has been examined by scanning electron microscopic and X-ray diffraction analyses and found to be uniform. The SP-NBO-10 composite membrane shows 38.4% of water uptake, whereas the pristine membrane limits to 27.1%. The prepared electrolyte membranes exhibit good proton conductivity at temperature varying from 30°C to 90°C and possess less activation energy for the transportation of proton by the incorporation of NBO filler. The thermal studies demonstrated that the stability of the composite membranes was significantly enhanced by the impregnation of NBO. The filler NBO shows excellent improvements on the polymer nanocomposite, making it a very promising additive for other polymers and offers new roads for energy applications.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Ganmin Zeng ◽  
Jing Han ◽  
Beibei Dai ◽  
Xiaohui Liu ◽  
Jinkun Li ◽  
...  

Alkaline anion exchange membrane (AAEM) plays an important role in the development of fuel cell. In this research, the electrostatic spinning technology was used to prepare AAEM. We use BC/TiO2 membrane as substrate by introduced quaternary ammonium groups to prepare BC/TiO2/CHPTAC (3-chloro-2-hydroxypropyl trimethyl ammonium chloride) composite membranes. The as-prepared composite membrane was characterized by XRD, SEM, XPS, and TG methods. It was found that BC/TiO2/CHPTAC (0.05 g) membrane exhibited high thermal stability and better comprehensive performance. The degree of substitution (DS), water uptake, and ion-exchange capacity (IEC) of BC/TiO2/CHPTAC membranes were investigated. The results showed that the DS, water uptake, and IEC of BC/TiO2/CHPTAC membrane were 1.16, 140%, and 1 mmol·g−1, respectively. We believe this composite membrane with excellent performances can promise many applications in fuel cells.


2010 ◽  
Vol 2 (3) ◽  
pp. 173-176
Author(s):  
Hery Haerudin ◽  
Nino Rinaldi ◽  
Adel Fisli

The modification of bentonite by pillarization using aluminum polycation type Keggin [Al13O4(OH)24(H2O)12]7+ has been carried out, by exchange of cation from interlayer with aluminum polycation. The amount of aluminum polycation, which was used for the pillaring of bentonite was varied, i.e. 5 mmol/gram, 10 mmol/gram, and 20 mmol/gram of bentonite. After drying, the pillared bentonite was calcined at 400 oC for 6 hour with temperature rate of 5 oC/min. The cationic exchange capacity (CEC) of starting bentonite was 98.3 meq/100 gram. The concentration ratio of Al/Si increased from 0.27 to 0.34 for pillared bentonite and of Ca/Si was decreased from 0.06 to 0.006 for pillared bentonite. The basal space for pillared bentonit increased significantly from 7.30 Å to about 18 Å . The measured specific surface area (by BET) of pillared bentonite was also increased significantly from 46 m2/g to about 162 m2/g. It was concluded that bentonite has been pillared by aluminum polication successfully.   Keywords: aluminum polycation, bentonite


2016 ◽  
Vol 5 (2) ◽  
pp. 85-94 ◽  
Author(s):  
Ozi Adi Saputra ◽  
◽  
Dheo Adha Saputra ◽  
Kartika Setia Rini ◽  
Edi Pramono ◽  
...  

2007 ◽  
Vol 334-335 ◽  
pp. 825-828 ◽  
Author(s):  
Wei Tan ◽  
Yi He Zhang ◽  
Yau Shan Szeto ◽  
Li Bing Liao

It was shown that chitosan and hydroxy-aluminum pillared montmorillonites were excellent materials for the removal of dyes and metal ions from effluent of dying and finishing. Chitosan/ hydroxy-aluminum pillared montmorillonite nanocomposites are expected to play a multiplex role in the treating process. In this study, the nanocomposite was prepared by incorporating hydroxy-aluminum pillared montmorillonite into chitosan solution that diluted acetic acid was used as solvent for dissolving the chitosan. The ratio of chitosan to the cationic exchange capacity of the montmorillonite was about 1:1, 2:1, 3:1, 4:1 and 6:1, respectively. The nanocomposites were characterized by XRD (X-ray diffraction), SEM (Scanning Electron Microscopy). The experimental results indicated that the presence of hydroxy-aluminum cation was in favor of the chitosan intercalation and the interlayers of MMT was intercalated with the bilayers of chitosan sheets. and they can be used in absorption of organic and metal ions for dying and finishing effluent.


2020 ◽  
Vol 26 (4) ◽  
pp. 444-450
Author(s):  
Deniss FEDORENKO ◽  
Guntars VAIVARS

In this study, synthesis of sulfonated poly(ether ether ketone) (SPEEK) was performed using sulfonation method with concentrated sulfuric acid. Polymer with three degrees of sulfonation was obtained: 0.87; 0.82 and 0.74. Composite membranes were synthesized with an activated carbon. Ultrasonication method was used in order to achieve homogeneity of distribution of the additive in polymer solution and then in polymer membranes. Membranes with various content of the additive were made: 0; 0.15; 0.3; 0.5; 0.6; 0.8; 1.0; 2.0 and 3.0 %. Swelling degree, water uptake, proton conductivity, isoelectric point, thermal properties and surface morphology of the membranes were analyzed. Proton conductivity was determined using impedance analysis with two electrode system and through-plane configuration. Two methods were used: differential and single membrane method. Differential method is proposed to have significant advantage as it reduces contact resistance, which otherwise is difficult to control and evaluate. Surface zeta potential of membrane surface was investigated, and membranes have shown variation of the potential. Isoelectric point was determined for the membranes with DS 0.82 and carbon content 0 % and 0.5 %, and it was found to be at pH 4. Water uptake and swelling degree of the membranes was studied, and active carbon content was found to not have major influence on those properties, but higher content of sulfonic groups leads to increased water uptake and swelling degree. Thermogravimetric analysis showed slightly better thermal properties of membranes with the additive, compared to the blank membranes, which can be related to differences in the water uptake. Surface of the membrane was investigated using scanning electron microscopy, and no considerable defects were observed.


Sign in / Sign up

Export Citation Format

Share Document