Synthesis and Characterization of Silver-Histidine Complex Doped Montmorillonite Antibacterial Agent

2012 ◽  
Vol 510 ◽  
pp. 757-761 ◽  
Author(s):  
Shu’e Duan ◽  
Yun Hui Zhai ◽  
Ying Juan Qu

In this paper a novel colorless and salt-tolerant silver-histidine complex doped montmorillonite (Na-MMT) antibacterial agent (SHMMT) power was synthesized by ion exchange reaction using silver-histidine complex ion [Ag (his)] + as precursor, and characterized by atomic absorption spectrophotometer (AAS) and power X-ray diffraction (XRD). The antibacterial activities against Pseudoalteromonas carrageenovora were examined by a modified broth dilution test and the plate counting method. The salt-tolerant property was determined by the antibacterial activities of the sea water soaked SHMMT. The results showed that the Ag loading amount of SHMMT powder reached 1.7mmol/g, far more than the cationic exchange capacity (CEC) of Na-MMT. SHMMT powder had high bacterial activity eventhough it was soaked in the sea water for 30 days. 1

2009 ◽  
Vol 79-82 ◽  
pp. 965-968
Author(s):  
Shu Xia Ren ◽  
Hui Fang Yang ◽  
Xiu Shu Tian ◽  
Yan Fang Li

The composite antibacterial agents were prepared with Medical stone containing Cu2+ and Zn2+ by liquid ion-exchange reaction. The ion exchange capacity of the as-prepared Medical stone composite antibacterial agents (MSAA) products were investigated by ICP-AES, and the antibacterial activities of the agents were tested by Bacteriastasis ratio, and the structures were characterized by XRD and SEM. The results show that the conditions of preparation, such as pH, concentrations of copper and zinc ions, reaction time and reaction temperature, have important influences on the ion exchange of MSAA. The maximum ion exchange capacity have been obtained when 0.2mol/l Cu2+ and 0.6 mol /l Zn2+ reacted with Medical stone powers in the solution with pH values of 8 for 8 hours at 50 °C. Meanwhile good antibacterial activities and safety are also gained. The reasons for causing the above results are that copper and zinc ions can enter the framework of Medical stone through ion exchanging and adsorption, and are released slowly owing to its porosity.


2007 ◽  
Vol 334-335 ◽  
pp. 825-828 ◽  
Author(s):  
Wei Tan ◽  
Yi He Zhang ◽  
Yau Shan Szeto ◽  
Li Bing Liao

It was shown that chitosan and hydroxy-aluminum pillared montmorillonites were excellent materials for the removal of dyes and metal ions from effluent of dying and finishing. Chitosan/ hydroxy-aluminum pillared montmorillonite nanocomposites are expected to play a multiplex role in the treating process. In this study, the nanocomposite was prepared by incorporating hydroxy-aluminum pillared montmorillonite into chitosan solution that diluted acetic acid was used as solvent for dissolving the chitosan. The ratio of chitosan to the cationic exchange capacity of the montmorillonite was about 1:1, 2:1, 3:1, 4:1 and 6:1, respectively. The nanocomposites were characterized by XRD (X-ray diffraction), SEM (Scanning Electron Microscopy). The experimental results indicated that the presence of hydroxy-aluminum cation was in favor of the chitosan intercalation and the interlayers of MMT was intercalated with the bilayers of chitosan sheets. and they can be used in absorption of organic and metal ions for dying and finishing effluent.


Cerâmica ◽  
2001 ◽  
Vol 47 (301) ◽  
pp. 4-8 ◽  
Author(s):  
C. Volzone ◽  
L. B. Garrido

Rheological changes were found in smectite (Wyoming- and Cheto-type montmorillonites) suspensions after structural modifications. The effect of the particle size and Na+ exchange on the flow curves of 6% wt/wt suspensions of smectites with and without Na2CO3 were examined. Mineralogical, structural and physicochemical characteristics were studied by X-ray diffraction (XRD), infrared spectroscopy (IR), cationic exchange capacity (CEC), Mg2+, Al3+ determinations, particle size distribution and swelling index (SI). Grinding in an oscillating mill modified the particle sizes. The montmorillonite grain size and the structural disorder increased after larger grinding times. The grinding treatment modified the apparent viscosity and the yield stress of the montmorillonite suspensions. The homoionic Na Cheto-type montmorillonite with fine particle size (obtained by grinding) increased the flow properties. Nevertheless, rheological properties were lower than those of suspensions of the Wyoming-type montmorillonite. Montmorillonite-types reacted differently with Na2CO3 additions and this behavior may be related to their structural composition. The Na2CO3 activation improved the flow properties of the original Wyoming-type montmorillonite and after 30 s grinding.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Cha Ping Liau ◽  
Mansor Bin Ahmad ◽  
Kamyar Shameli ◽  
Wan Md Zin Wan Yunus ◽  
Nor Azowa Ibrahim ◽  
...  

Polyhydroxybutyrate (PHB)/polycaprolactone (PCL)/stearate Mg-Al layered double hydroxide (LDH) nanocomposites were prepared via solution casting intercalation method. Coprecipitation method was used to prepare the anionic clay Mg-Al LDH from nitrate salt solution. Modification of nitrate anions by stearate anions between the LDH layers via ion exchange reaction. FTIR spectra showed the presence of carboxylic acid (COOH) group which indicates that stearate anions were successfully intercalated into the Mg-Al LDH. The formation of nanocomposites only involves physical interaction as there are no new functional groups or new bonding formed. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the mixtures of nanocomposites are intercalated and exfoliated types. XRD results showed increasing of basal spacing from 8.66 to 32.97 Å in modified stearate Mg-Al LDH, and TEM results revealed that the stearate Mg-Al LDH layers are homogeneously distributed in the PHB/PCL polymer blends matrix. Enhancement in 300% elongation at break and 66% tensile strength in the presence of 1.0 wt % of the stearate Mg-Al LDH as compare with PHB/PCL blends. Scanning electron microscopy (SEM) proved that clay improves compatibility between polymer matrix and the best ratio 80PHB/20PCL/1stearate Mg-Al LDH surface is well dispersed and stretched before it breaks.


2016 ◽  
Vol 10 (2) ◽  
pp. 116
Author(s):  
Edi Pramono ◽  
Candra Purnawan ◽  
Yuniawan Hidayat ◽  
Jati Wulansari ◽  
Sayekti Wahyuningsih

Research on the preparation and characterization of sulfonated polystyrene (PST) /chitosan vanillin (KV) composite as electrolyte membranes has been conducted in order to investigate the effect of PST and KV composition  to its chemical and physical properties. Polystyrene was modified by sulfonation reaction to produces PST<strong>, </strong>meanwhile chitosan was modified by schift base reaction to produces KV. The composite membranes were prepared by casting method and were characterized in order to identify the functional groups contained in the composite, the cation exchange capacity (CEC), the Swelling Degree (SD), the thermal properties and the morphology. The peak of imine vibration in the FTIR spectrum indicates that the chitosan vanilin was succesfully synthesized. Meanwhile, the peak of sulfonate vibration indicates the product of sulfonation on polystyrene. The result of CEC analysis shows that the addition of sulfonate groups on polystyrene and the addition of phenolic groups on chitosan increase the CEC value. The increasing of PST and KV concentration in membrane enhance the CEC value. However, the increasing of PST concentration in membrane composition even decrease the Swelling Degree of membranes. Meanwhile, the increasing of KV concentration increase the swelling degree of membranes. Thermal analysis shows that the thermal decomposition of membranes occurs in three stages i.e. the dehydration of water molecules, the degradation of the subtituen groups and the plasticizer and the degradation of the back bone of chitosan and polystyrene.


2018 ◽  
Vol 912 ◽  
pp. 263-268
Author(s):  
Rochélia Silva Souza Cunha ◽  
Joseane Damasceno Mota ◽  
Mariaugusta Ferreira Mota ◽  
Meiry Gláucia Freire Rodrigues ◽  
Fabricio Machado

The latest technologies require materials with combination of properties that are not usually found in conventional materials. Organic-inorganic hybrid materials emerge as alternatives to the synthesis of low cost new functional materials. The constituent polymer-clay nanocomposites are intended effectively for the treatment of oily effluents. The removal of oily effluents was evaluated using composite membranes with different nanocomposite percentages, consisting of a mineral clay BrasgelTM smaller than 2 μm and ultra high molecular weight polyethylene. The sample of clay was characterized by X-Ray Diffraction (XRD) and Cation Exchange Capacity (CEC), while the membranes by scanning electron microscope (SEM). The produced composite membranes efficiencies were evaluated by continuous flow for 1 hour. The results clearly confirmed that membranes incorporated with a higher percentage of nanocomposites achieved greater stability and less time as assessed in water flow.


Clay Minerals ◽  
2010 ◽  
Vol 45 (2) ◽  
pp. 229-240 ◽  
Author(s):  
M. Rebelo ◽  
F. Rocha ◽  
E. Ferreira Da Silva

AbstractThe use of pelitic geological materials for the treatment of muscle-bone-skin pathologies, by application of a cataplasm made of clay and mineral water mixture, is currently receiving attention and interest from the general public and scientific community. In Portugal there are several natural occurrences of clays/muds which are used for pelotherapy and/or geotherapy. These are carried out either indoors (thalassotherapy and thermal centres) or outdoors, in natural sites generally located near the seaside. The aim of this study is to assess the mineralogical and physicochemical properties of Portuguese raw materials for therapeutic purposes. These materials were collected from different Portuguese Mesozoic-Cenozoic geological formations located in the neighbourhood of thermal centres or at beaches known from their empirical applications. X-ray diffraction (XRD) and scanning electron microscopy (SEM-EDS) were used to assess the mineralogical composition of these clays. Physicochemical properties, such as specific surface area, cation exchange capacity, plasticity/abrasiveness indices and heat diffusiveness were also determined. Having distinct geological ages and genesis, the materials examined are mainly illitic. Less abundant kaolinite and smectite are also present. With respect to their physicochemical properties, all samples have good thermal properties which make them potentially suitable for therapeutic or aesthetic purposes.


2012 ◽  
Vol 727-728 ◽  
pp. 1591-1595 ◽  
Author(s):  
Aline Cadigena Lima Patrício ◽  
Marcílio Máximo da Silva ◽  
Anna Karoline Freires de Sousa ◽  
Mariaugusta Ferreira Mota ◽  
Meiry Glaúcia Freire Rodrigues

Cationic surfactants, such as quaternary ammonium cations, have been used, in order to ameliorate the oil sorption capacity of inorganics materials, such as clays. Clays modified with quaternary ammonium cations (organoclays) have better performance in sorption, remove oil and grease from water at seven times the rate of activated carbon, as well as they can be used like perforation fluids of oil wells to the oil base, lubricants, among others industries. This work aims characterize the Cloisite 30B using various techniques: X-Ray Diffraction (XRD), Specific Surface Area (BET) and Cation Exchange Capacity. Different organic solvents, namely gasoline, diesel and kerosene were used in order to investigate the clays compatibility after orgophilization.


2015 ◽  
Vol 820 ◽  
pp. 51-55
Author(s):  
I.A. Silva ◽  
I.D.S. Pereira ◽  
W.S. Cavalcanti ◽  
F.K.A. Sousa ◽  
Gelmires Araújo Neves ◽  
...  

The State of Paraíba has gained prominence in the production of raw bentonite in Brazil, where a new deposit has been found in the town of Sossego-PB, besides the deposit in the town of Boa Vista-PB. With the raise in the demand, the traditional reserves are depleting after several years of exploration, and this fact may result in a higher dependence on imported clays, thus existing a great interest in the discovery and characterization of new deposits, also guaranteeing technological improvements for the region. So, the objective of this work is to characterize the new deposits of the State of Paraíba, aiming at analyzing the characteristics the prove their classification as smectitic clays. The characterization was made through the analysis of chemical composition by X-ray fluorescence (EDX), X-ray diffraction (XRD), thermogravimetric analysis and thermal differential analyses (TG and DTA), cation-exchange capacity (CEC) and specific area (SA). The results prove that the studied samples presented, in their mineralogical composition, smectite, kaolinite and quartz, besides thermal and chemical behavior typical smectitic clays.


2015 ◽  
Vol 820 ◽  
pp. 56-59
Author(s):  
F.K.A. Sousa ◽  
I.A. Silva ◽  
W.S. Cavalcanti ◽  
Gelmires Araújo Neves ◽  
Heber Carlos Ferreira

Used in various branches of the industry, bentonitic clays are considered a valuable mineral, used specially in the petroleum industry for manufacturing of fluids used the drilling of petroleum wells in long depth. Recently, a deposit of this valuable mineral was discovered in the town of Olivedos-PB. There are data that prove that this is a very poor and underdeveloped town. So, this work aims at the physico-mineralogical characterization of clays recently discovered and, this way, verify if they present similar characteristics which allow them to replace the clays from Boa Vista-PB, and if they can be used by the industry, thus bringing social development for that town. The characterization was made by means of the analysis of chemical composition by X-ray fluorescence (EDX), thermogravimetric and thermal differential analyses (TG and DTA), X-ray diffraction (XRD), cation-exchange capacity (CEC) and specific area (SA). The results show that the clays recently discovered in Olivedos-PB are polycationic clays, presenting MgO, CaO and K2O content, and that they are constituted by smectitic clay mineral, by quartz and kaolinite.


Sign in / Sign up

Export Citation Format

Share Document