scholarly journals HIGH PERFORMANCE LIQUID CHROMATOGRAPHY METHOD VALIDATION OF α-MANGOSTIN ASSAY IN MANGOSTEEN (Garcinia mangostana L.) FRUIT RIND EXTRACT FORMULATED IN ORAL SOLUTION

2016 ◽  
Vol 11 (1) ◽  
pp. 38
Author(s):  
Liliek Nurhidayati ◽  
Siti Sofiah ◽  
Ros Sumarny ◽  
Kevin Caesar

<p>Mangosteen fruit rind extract contain a lot of antioxidants. α-Mangostin is a component in mangosteen fruit rind that has highest antioxidant effect. The oral solution containing mangosteen fruit rind extract is required an assay method for quality assessment. Determination of a very low concentration of analyte in sample with very complex matrix, such as α-mangostin in oral solution, needs a selective and sensitive method, such as high performance liquid chromatography (HPLC). In this study, α-mangostin assay was performed by reverse phase HPLC system using octadecylsilane (C18) as stationary phase,  methanol-water (90:10) as mobile phase, the flow rate is 1.0 mL/min, and the UV detector at 316 nm. The retention time of α-mangostin was 9.622 minutes. Peak of α-mangostin was well separated with resolution of 1.725. Linearity was in the range of 1.67-5.01 ppm with correlation coefficient of 0.9986. The relative standard deviation (RSD) was 1.30 %, the recovery was in the range of 95.80-100.76 </p>

2015 ◽  
Vol 11 (1) ◽  
pp. 38
Author(s):  
Liliek Nurhidayati ◽  
Siti Sofiah ◽  
Ros Sumarny ◽  
Kevin Caesar

<p>Mangosteen fruit rind extract contain a lot of antioxidants. α-Mangostin is a component in mangosteen fruit rind that has highest antioxidant effect. The oral solution containing mangosteen fruit rind extract is required an assay method for quality assessment. Determination of a very low concentration of analyte in sample with very complex matrix, such as α-mangostin in oral solution, needs a selective and sensitive method, such as high performance liquid chromatography (HPLC). In this study, α-mangostin assay was performed by reverse phase HPLC system using octadecylsilane (C18) as stationary phase,  methanol-water (90:10) as mobile phase, the flow rate is 1.0 mL/min, and the UV detector at 316 nm. The retention time of α-mangostin was 9.622 minutes. Peak of α-mangostin was well separated with resolution of 1.725. Linearity was in the range of 1.67-5.01 ppm with correlation coefficient of 0.9986. The relative standard deviation (RSD) was 1.30 %, the recovery was in the range of 95.80-100.76 </p>


2010 ◽  
Vol 7 (3) ◽  
pp. 962-966 ◽  
Author(s):  
Naveen Kumar ◽  
Nishant Verma ◽  
Omveer Songh ◽  
Naveen Joshi ◽  
Kanwar Gaurav Singh

A simple, precise, sensitive, fast and accurate high performance liquid chromatography method has been developed for the determination of atenolol using mixture of phosphate buffer and acetonitrile (53:47 v/v) as mobile phase. Buffer was prepared by mixing 0.02 M K2PO4and 0.003 M KH2PO4in equal proportion. Detection was carried out using UV detector at λmax230 nm. Column was ODS and dimensions of column was 25 mm × 4.6 mm. Atenolol was eluted out at retention time of 2.1 min. Method was validated at 1.2 mL/min flow rate. Calibration curve was linear between ranges of 40 to 200 mcg concentration. The limit of detection was calculates 120 nano gram and limit of quantitation is 510 nano gram. The relative standard deviation (RSD) of atenolol was 0.6. The percentage recovery of atenolol was 99.6%.


Author(s):  
Raju Chandra ◽  
Manisha Pant ◽  
Harchan Singh ◽  
Deepak Kumar ◽  
Ashwani Sanghi

A reliable and reproducible reversed-phase high performance liquid chromatography (RP-HPLC) was developed for the quantitative determination of Remipril drug content from marketed bulk tablets. The active ingredient of Remipril separation achieved with C18 column using the methanol water mobile phase in the ratio of 40:60 (v/v). The active ingredient of the drug content quantify with UV detector at 215 nm. The retention time of Remipril is 5.63 min. A good linearity relation (R2=0.999) was obtained between drug concentration and average peak areas. The limit of detection and limit of quantification of the instrument were calculated 0.03 and 0.09 µg/mL, respectively. The accuracy of the method validation was determined 102.72% by recoveries method.


2006 ◽  
Vol 89 (6) ◽  
pp. 1552-1556
Author(s):  
ArmaĞan Önal ◽  
Olcay SaĞiri ◽  
S Müge Çetin ◽  
Sidika Toker

Abstract Reboxetine is used as a selective noradrenaline reuptake inhibitor for the treatment of major depressive disorders. It is effective in the treatment of severe depression and safer to use than traditional tricyclic antidepressants. In this study, a novel, simple, and rapid stability-indicating high-performance liquid chromatography (HPLC) method for reboxetine methansulfonate was successfully developed and validated for the assay of tablets. The method was used to quantify reboxetine in tablets; it employed a C18 column (150 4.6 mm id) with an isocratic mobile phase consisting of methanolphosphate buffer (pH 7, 0.02 M; 55 + 45, v/v) at a flow rate of 1.0 μmL/min. Reboxetine was detected by an ultraviolet detector at 277 nm. The retention time of reboxetine was about 4.5 min. The developed HPLC method was validated with respect to linearity, precision, sensitivity, accuracy, and selectivity. The method was linear over the concentration range 150 g/mL (r 0.9999). The limits of detection and the quantitation of reboxetine were 0.1 and 0.3 μg/mL, respectively. The relative standard deviation values for intraday and interday precision were 0.781.01 and 1.081.37%, respectively. Selectivity was validated by subjecting a stock solution of reboxetine to neutral, acid, and alkali hydrolysis, as well as oxidation, dry heat treatment, and photodegradation. The peaks of the degradation products did not interfere with the peak of reboxetine. The results indicated that the proposed method could be used in a stability assay. The proposed method was successfully applied to the determination of reboxetine in tablets. Excipients present in the tablets did not interfere with the analysis.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Paula Karina S. Uchoa ◽  
Leandro Bezerra de Lima ◽  
Antonia T. A. Pimenta ◽  
Maria da Conceição F. de Oliveira ◽  
Jair Mafezoli ◽  
...  

A high-performance liquid chromatography method was developed and validated for the quantification of the cytotoxic compounds produced by a marine strain ofAspergillus niger. The fungus was grown in malt peptone dextrose (MPD), potato dextrose yeast (PDY), and mannitol peptone yeast (MnPY) media during 7, 14, 21, and 28 days, and the natural products were identified by standard compounds. The validation parameters obtained were selectivity, linearity (coefficient of correlation > 0.99), precision (relative standard deviation below 5%), and accuracy (recovery > 96).


2011 ◽  
Vol 140 ◽  
pp. 296-301 ◽  
Author(s):  
Cai Mei Wu ◽  
Hong Min Yuan ◽  
Gang Jia ◽  
Zhi Sheng Wang ◽  
Xiu Qun Wu

A reversed high performance liquid chromatography method was developed for the quantitative determination of mimosine and 2,3-DHP in leaves ofLeucaena Leucocephala. Mimosine and 2,3DHP were extracted using 0.1N HCl.The chromatograph conditions were investigated and optimized. The optimal HPLC conditions as follows: Agilent HC-C18 column (4.6×150mm,5μm) was used at 30°C. The method used a variable wavelength UV detector at 280nm, the mobile phase consisted of 0.2 % (w/v) orthophosphoric acid and methanol, the gradient elution was adopted. The injection volume was 10μL. The linearity is favorable in the range of 1.0 to 50μg mL-1with a correlation coefficient of 0.99998 for mimosine and 0.99902 for 2,3DHP. Under the optimal conditions, the method limit of detection (LOD) of mimosine and 2,3DHP were 0.40mg/kg and 0.55mg/kg respectively. The recovery of mimosine was 87.00-94.70% with the RSD (n=5) of 2.75-3.81% in the spiked levels 0,1, 5, 20mg/g. At the same time, the recovery of 2,3DHP was 88-95.4% with the RSD (n=5) of 2.24-4.90%. The method was found to be simple, sensitive, fast and accurate, and has been applied successfully for the quantitative detection of mimosine and 2,3-DHP in leaves ofLeucaena Leucocephala, plasma and excretion of ruminant.


Author(s):  
Susithra E ◽  
Pavani Ch

Objective: The immense literature study was carried out and disclosed that here no method arrived for the concomitant assessment of omeprazole and piperine in bulk form by using RP-HPLC. Hence, an effort was assembled to arise a easy, specific, precise, reliable, linear, rapid, and validated reverse phase-high-performance liquid chromatography (RP-HPLC) technique for the simultaneous assessment of omeprazole and piperine in bulk form.Methods: The chromatographic analysis of omeprazole and piperine was performed using a RP-HPLC (WATERS) provided with autosampler and ultraviolet (UV) detector with the software of EMPOWER Version 2. The chosen conditions were isocratic separation with two mobile phase composed of acetonitrile:buffer (phosphate buffer: pH 6.5 ± 0.1) (55:45). Detection was carried out using UV/visible double-beam spectrophotometer at 320 nm. The method was validated as per the ICH guidelines.Results: The retention time for omeprazole and piperine by proposed HPLC method was found to be 2.767 and 4.029 min, respectively. The correlation coefficients are 0.999. The developed chromatographic method was found to be accurate with recovery 99.2–99.8% and was found within the acceptance criteria (i.e., 98.0–102.0%) with acceptable % relative standard deviation of not >2% at each level.Conclusion: Thus, the proposed HPLC procedure for the concomitant assessment of omeprazole and piperine was accurate, precise, linear, robust, simple, and economic. 


Author(s):  
K. SRI GIRIJA ◽  
BIKSHAL BABU KASIMALA ◽  
VENKATESWARA RAO ANNA

Objective: The objective of the present study is to develop a stability-indicating reverse-phase high-performance liquid chromatography (RP-HPLC) method for qualitative and quantitative determination of Eptifibatide and its impurities in bulk and pharmaceutical dosage forms. Methods: The chromatographic separation was carried on Phenomenex Luna C18 column (250 mm×4.6 mm; 5µ id) as stationary phase, methanol and phosphate buffer at pH 6.4 in the ratio of 65:45 (v/v) as mobile phase at flow rate of 1.0 ml/min, Ultra Violet (UV) detection was carried at the wavelength of 236 nm and the analysis was completed with a run time of 15 min. Results: In the developed conditions, the retention time of Eptifibatide and its impurities 1 and 2 were found to be 3.35, 4.93 and 8.18 min, respectively. The method was validated for system suitability, range of analysis, precision, specificity, stability and robustness. Spiked recovery at 50%, 100% and 150% was carried for both standard and impurities and the acceptable % recovery of 98-102 was observed for Eptifibatide and both impurities studied and the % Relative standard deviation (RSD) in each spiked level was found to be less than 2. Stability tests were done through the exposure of the analyte solution to five different stress conditions i. e expose to 1N Hydrochloric acid (HCl), 1 N Sodium hydroxide (NaOH), 3% Hydrogen peroxide (H2O2), 80 °C temperature to UV radiation. In all the degradation conditions, standard drug Eptifibatide was detected along with both the impurities studied and the degradation products were successfully separated. In the formulation analysis, there is no other chromatographic detection of other impurities and formulation excipients. Conclusion: The developed method was found to be suitable for the quantification of Eptifibatide and can separate and analyse impurities 1 and 2.


2010 ◽  
Vol 54 (8) ◽  
pp. 3408-3413 ◽  
Author(s):  
Lorena Baietto ◽  
Antonio D'Avolio ◽  
Giusi Ventimiglia ◽  
Francesco Giuseppe De Rosa ◽  
Marco Siccardi ◽  
...  

ABSTRACT We have developed and validated a high-performance liquid chromatography method coupled with a mass detector to quantify itraconazole, voriconazole, and posaconazole using quinoxaline as the internal standard. The method involves protein precipitation with acetonitrile. Mean accuracy (percent deviation from the true value) and precision (relative standard deviation percentage) were less than 15%. Mean recovery was more than 80% for all drugs quantified. The lower limit of quantification was 0.031 μg/ml for itraconazole and posaconazole and 0.039 μg/ml for voriconazole. The calibration range tested was from 0.031 to 8 μg/ml for itraconazole and posaconazole and from 0.039 to 10 μg/ml for voriconazole.


Sign in / Sign up

Export Citation Format

Share Document