Direction Estimation and Visualization of Yarns from CT Volumes of SiC Fabric

2016 ◽  
Vol 10 (2) ◽  
pp. 179-186 ◽  
Author(s):  
Yukie Nagai ◽  
◽  
Yutaka Ohtake ◽  
Hiromasa Suzuki ◽  
Hiroyuki Hishida ◽  
...  

Ceramic matrix composite (CMC) is a material with high thermostability. Since it is lower in weight than metals realizing the same thermostability, it has been attracting increasing attention in many fields. It has an inner fabric structure made of ceramics (SiC), and the yarns of the fabric give this material rather high stiffness in the directions the yarns run. To guarantee the stiffness of the material, it is necessary to inspect the yarns. X-ray CT scanning, a non-destructive inspection technique, is one of the best ways to do this. However, the quality of a CT volume of SiC fabric tends to be very low, and the resolution is generally also low because of the restriction on the time given for the inspection and the relatively large size of CMC parts. This paper presents an algorithm for computing the directions of the yarns in an SiC fabric from a low quality CT volume, and it proposes a way to visualize the computed directions for a better recognition of the directions. It also presents some experimental results that show the effects of the proposed algorithms.

2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Lin Xue ◽  
Hiromasa Suzuki

Many types of artifacts appear in X-ray computed tomography (CT) volume data, which influence measurement quality of industrial cone beam X-ray CT. Most of those artifacts are associated to CT scanning parameters; therefore, a good scanning parameter setting can weaken the influence to improve measurement accuracy. This paper presents a simulation method for evaluating CT scanning parameters for dimensional metrology. The method can aid CT metrology to achieve high measurement accuracy. In the method, image entropy is used as a criterion to evaluate the quality of CT volume data. For entropy calculation of CT volume data, a detailed description about bin width and entropy zone is given. The relationship between entropy values of CT volume data and error parameters of CT metrology is shown and discussed. By use of this method, mainly we focus on specimen orientation evaluation, and some other typical scanning parameters are used to evaluate the proposed method. Two typical specimens are used to evaluate the performance of the proposed method.


2021 ◽  
Author(s):  
Αλέξανδρος Εμμανουηλίδης

This thesis presents a multi-proxy reconstruction from 5 different coastal wetlands of southern Greece spanning in the Holocene period and an in-depth review and application of non-destructive systems (CT scanning, X-ray Fluorescence) in paleoenvironmental research. During this thesis, the acquired dataset used consisted of a) X-ray Fluorescence scanning (XRF), b) Computed Tomography (CT) scanning, c) Stable isotopes δ18O and δ13C, d) micropaleontology (foraminifera, ostracods, diatoms, pollen), e) mineralogical analysis, and f) standard sedimentological techniques (grain size, magnetic susceptibility (MS), Total Organic Carbon (TOC), carbonates content). The chronological framework for the sediment cores was established through 14C radiocarbon dating. The wetlands studied are Aliki salt pond (NE Gulf of Corinth), Klisova lagoon (SW Greece), lake Vouliagmeni (E Gulf of Corinth), Agoulinitsa marsh field (W Peloponnese) and Pappas lagoon (NW Peloponnese). The sites form an E-W transect of southern Greece, an area with high climatic and environmental spatial variability, whereas human occupancy on all areas is recorded from antiquity. Non-destructive, high-resolution techniques used in this thesis have been established as standard in the last decades and have been a great asset in geosciences. Computed Tomography (CT) was conducted in lake Vouliagmeni, Agoulinitsa marsh and Pappas lagoon cores. In contrast, XRF was performed on all core sections except for Pappas lagoon core, where the high assemblage of bivalve shells could lead to bias of Ca. The fundamental parameter behind CT analysis is the Hounsfield units that reflect relative density variations in the sediment. Correlation between HU values and heavy elements like Zr has been detected in all cores, whereas distinct sedimentological facies were recorded according to HU variations. In Agoulinitsa and Pappas lagoon, microstructural characteristics like shells/sediment ratio and root remnants were examined through 3D sections, in which HU boundaries were set accordingly. Lake Vouliagmeni sediment core was characterized by extreme stratigraphic variations with lamination structures alternating with homogenous deposits and event layers. Laminae thickness and boundaries were recorded through 3D rendered volumes with HU boundaries. Micro CT scanning and thin section analysis was also performed to cross-check possible variations. Event sedimentation layers were distinguished through the combined use of CT scanning, XRF and MS, with layers responding to increased HU, MS and Mn values. Statistical assessment of elemental distribution and HU revealed 3 different clusters. Cluster A responded to sedimentation during enhanced evaporation in the area, Cluster B emulated sedimentation during increased chemical weathering in the catchment, and Cluster C reflected the homogenous deposits. Aliki salt pond is located in a highly tectonic region, at the northeast part of the Gulf of Corinth in Greece. Beachrock deposits that form a barrier between the salt pond and the marine environment play an essential role in the evolution of the area. The chronological framework was set at ca. 3100 cal BP by four 14C radiocarbon dates and the established evolutionary model indicate four different changes taking place during this period in the study area. From around 3100 to 1600 cal BP, a transition from a closed to an open lagoonal environment, was identified, interrupted by a terrestrial fluvial deposit at ca. 2500 cal BP. A shift toward a closed lagoonal system at around 1600 cal BP and the establishment of a salt pond environment seem to correlate with tectonic activity. The study provides important information about the evolution of the coastal landscape in such an active tectonic region and points the interaction between regional human activity and climatic changes during the late-Holocene period.Klisova lagoon is located in the eastern part of Messolonghi-Etoliko wetland, the biggest lagoonal complex of Greece and an area of great environmental interest. For the last 4700 cal BP, the freshwater influx, the progradation of the Evinos river delta and related geomorphological changes control the environmental conditions (e.g. depth and salinity) in the lagoon system. Considering the centennial temporal resolution of our analyses, small offsets of c.a. 50 years due to the lack of regional reservoir correction do not impact the reported radiocarbon ages considerably. Prior to 4000 cal BP, a relatively shallow water depth, significant terrestrial/freshwater input and increased weathering in the lagoon area are inferred. Elemental proxies and increased dinoflagellate and foraminifera abundances, which indicate marine conditions with prominent freshwater influxes, point to the gradual deepening of the lagoon recorded at the drilling site up to 2000 cal BP. The marine and freshwater conditions equilibrium sets at 1300 cal BP, and the lagoonal system seems to reach its present state. Maxima of anthropogenic pollen indicators during the Mycenaean (3200 cal BP), Hellenistic (2200 cal BP) and Late Byzantine (800 cal BP) periods suggest intervals of increased anthropogenic activities in the study area. Lake Vouliagmeni is subjected to intense climatically and tectonic forces, causing stratigraphic variations, with laminated sediments frequently interrupted by homogenous and event sedimentation deposits. Lamination couplets consist of aragonite layers alternating with detrital and organic residues and form during periods of seawater intrusion and stratification of the lake water. The discontinuous occurrence of laminated deposits excludes a varve based chronology from being established but still highlights the susceptibility of the lake to record environmental and climatically driven changes. Our synthesis model for regional climatic reconstruction and local environmental changes derives from δ18O and δ13C data from the laminated and homogenous sediments studied separately depending on the dominant carbonate mineral. This is further strengthened by high-resolution geochemical proxies, diatom and sedimentological data. Regional climatic trajectories from key sites and possible links to the lake Vouliagmeni record are explored in response to atmospheric circulation patterns variations. Phases of overall humid conditions are recorded by the increased inflow of siliciclastic material in the lake and negative δ18Obulk values. In contrast, periods of marine intrusion and enhanced evaporation are recorded by aragonite precipitation, increased δ18OAr values and laminations. The driving mechanism behind laminae formation seems to be marine intrusions, leading to pycnocline stabilization and increased evaporation of lake surface waters during summer months. Climatic oscillations recorded during the Holocene, apart from their duration, do not exceed events of the last millennia.


2018 ◽  
Vol 42 (6) ◽  
pp. 643-652 ◽  
Author(s):  
André Dantas de Medeiros ◽  
Joyce de Oliveira Araújo ◽  
Manuel Jesús Zavala León ◽  
Laércio Junio da Silva ◽  
Denise Cunha Fernandes dos Santos Dias

ABSTRACT Non-destructive and high performance analyses are highly desirable and important for assessing the quality of forest seeds. The aim of this study was to relate parameters obtained from semi-automated analysis of radiographs of Leucaena leucocephala seeds to their physiological potential by means of multivariate analysis. To do so, seeds from five lots collected from parent trees from the region of Viçosa, MG, Brazil, were used. The study was carried out through analysis of radiographic images of seeds, from which the percentage of damaged seeds (predation and fungi), and measurements of area, perimeter, circularity, relative density, and integrated density of the seeds were obtained. After the X-ray test, the seeds were tested for germination in order to assess variables related to seed physiological quality. Multivariate statistics were applied to the data generated, with use of principal component analysis (PCA). X-ray testing allowed visualization of details of the internal structure of seeds and differences regarding density of seed tissues. Semi-automated analysis of radiographic images of Leucaena leucocephala seeds provides information on seed physical characteristics and generates parameters related to seed physiological quality in a simple, fast, and inexpensive manner.


2019 ◽  
Vol 25 (3) ◽  
pp. 583-591 ◽  
Author(s):  
John Thornton ◽  
Benedicta D. Arhatari ◽  
Mitchell Sesso ◽  
Chris Wood ◽  
Matthew Zonneveldt ◽  
...  

AbstractIn this study, we have examined ceramic matrix composites with silicon carbide fibers in a melt-infiltrated silicon carbide matrix (SiC/SiC). We subjected samples to tensile loads while collecting micro X-ray computed tomography images. The results showed the expected crack slowing mechanisms and lower resistance to crack propagation where the fibers ran parallel and perpendicular to the applied load respectively. Cracking was shown to initiate not only from the surface but also from silicon inclusions. Post heat-treated samples showed longer fiber pull-out than the pristine samples, which was incompatible with previously proposed mechanisms. Evidence for oxidation was identified and new mechanisms based on oxidation or an oxidation assisted boron nitride phase transformation was therefore proposed to explain the long pull-out. The role of oxidation emphasizes the necessity of applying oxidation resistant coatings on SiC/SiC.


Author(s):  
Akira Mizoguchi ◽  
Koichiro Takeuchi

Abstract Now we are attempting to apply non destructive analysis from evaluation tests or failure analysis to acceptance tests or production tests. Needless to say non destructive analysis has an advantage of conserving the state of samples and the reducing the time of analysis as compared to conventional methods with destructive physical analysis. Moreover, we are paying attention to the following reasons for nondestructive physical analysis. It is difficult to keep the reproducibility of the analysis because of the high skill level required for destructive physical analysis. On the other hand, high reproducibility can be easily achieved by fixing the condition or parameters of the device during nondestructive analysis when performed by tools like X-ray. Moreover, we expect that neither the analytical result nor the quality of the nondestructive analysis depends upon the worker's capability. In this paper we will discuss the following two items from the viewpoint of quality assurance. 1. The method of the screening for fake parts (1) The procedure flow for the production discontinued parts (2) The comparison and examination between the diagnostic using X-ray computed tomography (X-ray CT) images and various examinations (3) Other observation cases using X-ray CT images 2. Effectiveness and consideration in reliability evaluation test using X-ray CT image (1) Comparison of observation cases with a variety of jointing points in parts (2) Consideration of application of nondestructive observation technique in reliability test Use of X-ray CT images is effective in diagnosing the quality of the product or the process. Moreover, we find that use of X-ray CT images is effective for the improvement of the reproducibility of the evaluation examination. Then we find that use of X-ray CT images can reduce the time of evaluation examination too.


2017 ◽  
Vol 267 ◽  
pp. 248-252
Author(s):  
Alexey Tatarinov ◽  
Viktor Mironov ◽  
Dmitry Rybak ◽  
Pavels Stankevich

Possibilities of non-destructive testing (NDT) methods to assess the quality of permanent joints of powder metal parts were evaluated. Antifriction bushing-bushing couples used in transport braking systems were investigated. The parts made of bronze graphite were crimped by pulsed magnetic deformation by means of electromagnetic equipment with a maximum discharge energy of 30 kJ. The gap between joint parts in the couples was assessed by ultrasonic and radiographic methods. A standard ultrasonic flaw detector Krautkramer USM-25 with an Olympus 4MHz dual-element echo transducer and an industrial x-ray apparatus YXLON EVO 200D were used, correspondingly. In first trial, both methods were equally sensitive to tight and weak connection of joints.


Sign in / Sign up

Export Citation Format

Share Document