Study on the Containment Performance of MOX Fuel Processing Glovebox in Earthquake -Loading and Leakage Tests for Window Panels-

2010 ◽  
Vol 5 (4) ◽  
pp. 463-468
Author(s):  
Akihiro Matsuda ◽  
◽  
Yuichi Uchiyama ◽  
Masakatsu Inagaki ◽  
Susumu Tsuchino ◽  
...  

This paper shows the results of the leakage tests and the large deformation analysis of a full-scale glovebox window to establish the capacity of the containment of the MOX fuel manufacturing glovebox during an earthquake. In leakage tests, the stainless steel container installed on the reverse of the glovebox window was pressurized with a halogen-air mixture after deformation was applied to the upper part of window frame using 6 micro handy jacks, and to the four glove-ports using electrical actuators. A numerical model for the rubber seal was obtained with biaxial loading tests of chloroprene sheet specimens. Tensile loading tests of acrylic resin specimens were conducted to measure the material modulus. The FEM code ABAQUS was applied to the numerical simulation and the user-subroutine function for the hyperelastic model was used to predict the deformation of the rubber seal. These tests demonstrated that a glovebox window constructed with a rubber seal and a resin panel shows no leakage larger than 0.1 vol%/h with large static deformation. The results of the numerical simulation showed that the rubber seal resolved the effects of deformation of a window panel on the containment barrier, and that two lips of the rubber seal play a key role on the containment of the glovebox.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Kunmeng Li ◽  
Yuanhui Li ◽  
Shuai Xu ◽  
Zhipeng Xiong ◽  
Long An

In this paper, the failure and fracture process of mylonite with a prefabricated circular opening under biaxial loading is studied by PFC2D code. Firstly, the hoop stress change law of opening wall in the process of loading is theoretically analyzed and three fracture patterns of rocks are proposed. Secondly, the biaxial loading tests of mylonite for numerical simulation are carried out, and the failure and fracture are analyzed from three aspects of space-time evolution of microcracks, energy conversion process, and final damage patterns. As the load progresses, the microcracks start to initiate at the side wall of the opening and the growth velocity of microcracks develops from the slow to fast and then slows down again. The final damage pattern of mylonite with a prefabricated circular opening belongs to shear fracture. The fracture zones start with the side wall spalling and then gradually extend to the border of the rock, which widen from the opening boundary to the border of the rock and slightly twist in the middle. The final fault zone width is about 6 times wider than the average size of simulation particles. Finally, based on the uniaxial compressive strength of mylonite in the laboratory, it is inferred that the fracture pattern of mylonite with a prefabricated circular opening by theoretical analysis is indeed shear failure, which is consistent with the result of numerical simulation.


2010 ◽  
Vol 118-120 ◽  
pp. 70-74
Author(s):  
Yu Liu ◽  
Jian Xin Liu ◽  
Shu Yi Yan ◽  
Zhi Min Wang ◽  
Bing Zhang

Welding process of automobile panels is a key process in the manufacturing of automobile body and its quality directly impact on the appearance and quality of automobile. The causes of dimensional deviation of welded assembly could be workpieces variation, assembly tooling variation, and welding distortion. As a major source of assembly deviation, dimensional variations of workpieces have important effects on the assembly quality of automobile body. In this paper, pre-stressing was used to reflect the workpieces’ variation and the node coupling method was used in the numerical simulation to predict the deformation of assembly caused by the welding process of automobile panels. And further the computation results were listed and compared with the measured ones.


2018 ◽  
Vol 323 ◽  
pp. 385-392 ◽  
Author(s):  
Dong Lei ◽  
Jinfeng Huang ◽  
Wenxiang Xu ◽  
Wenchao Wang ◽  
Pei Zhang

2007 ◽  
Vol 353 (52-54) ◽  
pp. 4647-4653 ◽  
Author(s):  
V.S. Yalmali ◽  
D.S. Deshingkar ◽  
P.K. Wattal ◽  
S.R. Bharadwaj

2013 ◽  
Vol 798-799 ◽  
pp. 235-238
Author(s):  
Xiao Hui Chen ◽  
Xu Chen

The current paper reports the results of a numerical simulation and experiment of ratcheting behavior of pressurized straight pipe under reversed bending. A nonlinear isotropic/ kinematic (combined) hardening model is implemented into finite element program ANSYS by writing own user subroutine in FORTRAN language. The results of the numerical simulation is compared with experimental data. A reasonable agreement is noticed between the experimental and the numerical results for the ratcheting behavior of the pressurized straight pipe subjected to reversed bending.


Author(s):  
Wenzhi Cui ◽  
Longjian Li ◽  
Tien-Chien Jen ◽  
Qinghua Chen ◽  
Quan Liao

On-board hydrogen generation from hydrocarbon fuels, such as methanol, natural gas, gasoline and diesel, etc., will be technically feasible in the near future for fuel cell powered vehicles. Among all the fuel processing methods, steam reforming is considered as the most widely used method of hydrogen reforming for the lower reactive temperature, pressure and higher hydrogen ratio in reformate. A laminate micro-channel catalytic reactor was designed for the purpose of hydrogen generation from hydrocarbons. The depth of the reaction channel is 0.5 mm, and the length and width are 50 mm and 40 mm, respectively. The same geometry is designed for the heating channels. A metal sheet is placed between reacting and heating channels to separate them. Piling up alternately the two channels is to buildup the laminate microchannel reactor. Numerical simulation has been conducted in one reactive unit, i.e., one reacting channel and one heating channel. The reactant is the solution of methanol and water mixing with a certain ratio. And the reaction heat is provided by hot air flow with a temperature of 600K. A 2D steady model of the reforming reactive processes was developed and solved numerically. The ratio of water and methanol is set to be at 1.3. The conversion rate of methanol was nearly 100% at the outlet of reactor, while the volume ratio of hydrogen is 51.4% with the selectivity of CO2 reaches 49.2%. Detail results showed that the 50 mm long reacting channel could be divided into four different regimes along with the reacting course. In the first regime (0-5mm), methanol in the reactants is almost completely converted and CO is mainly generated in the third one (15-20mm), while reactions in the other two regimes are indiscoverable. The reasons leading to such phenomena are clarified in this paper.


Author(s):  
Hisakazu SAKAI ◽  
Sumio SAWADA ◽  
Yoshikazu TAKAHASHI ◽  
Akira IGARASHI ◽  
Kazumasa MANABE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document