A Sliding Mode Controller Using an LS-SVM Model for a Water-Hydraulic Artificial Rubber Muscle

2020 ◽  
Vol 32 (5) ◽  
pp. 903-910
Author(s):  
Takahiro Kosaki ◽  
◽  
Yuta Kawahara ◽  
Shigang Li

We describe a sliding mode controller design for an artificial rubber muscle driven by tap-water pressure. The hysteretic characteristics of this water-hydraulic artificial rubber muscle (WARM) often deteriorate its control accuracy. To cope with this complicated hysteresis, a modeling approach based on the least squares support vector machine (LS-SVM) with nonlinear kernel functions is first applied to a WARM. By employing this LS-SVM-based WARM model, a sliding mode controller is then derived for the WARM drive system. We verify the control performance of the proposed controller and compare its tracking accuracy with our previously developed controller through experiments.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Wenru Fan ◽  
Bailing Tian

A multivariable super-twisting sliding mode controller and disturbance observer with gain adaptation, chattering reduction, and finite time convergence are proposed for a generic hypersonic vehicle where the boundary of aerodynamic uncertainties exists but is unknown. Firstly, an input-output linearization model is constructed for the purpose of controller design. Then, the sliding manifold is designed based on the homogeneity theory. Furthermore, an integrated adaptive multivariable super-twisting sliding mode controller and disturbance observer are designed in order to achieve the tracking for step changes in velocity and altitude. Finally, some simulation results are provided to verify the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document