scholarly journals Optimization and software-numerical implementation of miller's algorithm on a four-frequency model of solid vibration movement

Author(s):  
Irina Homozkova ◽  
Yuriy Аndriyovych Plaksiy

On the basis of a programmed-numerical approach, new values of the coefficients in the Miller orientation algorithm are obtained. For this, an analytical reference model of the angular motion of a rigid body was applied in the form of a four-frequency representation of the orientation quaternion.The numerical implementation of the reference model for a given set of frequencies is presented in the form of constructed trajectories in the configuration space of orientation parameters. A software-numerical implementation of Miller's algorithm is carried out for different values of the coefficients and the values of the coefficients are obtained, which optimize the error of the accumulated drift. It is shown that for the presented reference model of angular motion, Miller's algorithm with a new set of coefficients provides a lower computational drift error compared to with the classic Miller algorithm and the Ignagni modification, which are optimized for conical motion.

Author(s):  
Sotirios Natsiavas ◽  
Elias Paraskevopoulos ◽  
Nikolaos Potosakis

A systematic theoretical approach is presented first, in an effort to provide a complete and illuminating study on motion of a rigid body rotating about a fixed point. Since the configuration space of this motion is a differentiable manifold possessing group properties, this approach is based on some fundamental concepts of differential geometry. A key idea is the introduction of a canonical connection, matching the manifold and group properties of the configuration space. Next, following the selection of an appropriate metric, the dynamics is also carried over. The present approach is theoretically more demanding than the traditional treatments but brings substantial benefits. In particular, an elegant interpretation can be provided for all the quantities with fundamental importance in rigid body motion. It also leads to a correction of some misconceptions and geometrical inconsistencies in the field. Finally, it provides powerful insight and a strong basis for the development of efficient numerical techniques in problems involving large rotations. This is demonstrated by an example, including the basic characteristics of the class of systems examined.


2015 ◽  
Vol 5 (1) ◽  
pp. 20140051 ◽  
Author(s):  
Lucas Brely ◽  
Federico Bosia ◽  
Nicola M. Pugno

Adhesion of spider web anchorages has been studied in recent years, including the specific functionalities achieved through different architectures. To better understand the delamination mechanisms of these and other biological or artificial fibrillar adhesives, and how their adhesion can be optimized, we develop a novel numerical model to simulate the multiple peeling of structures with arbitrary branching and adhesion angles, including complex architectures. The numerical model is based on a recently developed multiple peeling theory, which extends the energy-based single peeling theory of Kendall, and can be applied to arbitrarily complex structures. In particular, we numerically show that a multiple peeling problem can be treated as the superposition of single peeling configurations even for complex structures. Finally, we apply the developed numerical approach to study spider web anchorages, showing how their function is achieved through optimal geometrical configurations.


2020 ◽  
Vol 17 (2 Jul-Dec) ◽  
pp. 191
Author(s):  
H.E. Ibarra-Villalón ◽  
O. Pottiez ◽  
A. Gómez-Vieyra ◽  
Y. E. Bracamontes-Rodriguez ◽  
J. P. Lauterio-Cruz

This work presents a numerical approach to understand the self-regeneration mechanism of the fundamental soliton propagation driven by the nonlinear Schr\"odinger equation in the nonlinear fiber formalism. This approach shows that the interplay between dispersion and nonlinearity results in a compensation effect in the phase and the instantaneous frequency representation of the pulse envelope. For a better understanding of this compensation process, 3D mapping propagation graphs are presented.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Qingyi Zhan ◽  
Xiangdong Xie

This paper is devoted to a new numerical approach for the possibility of(ω,Lδ)-periodic Lipschitz shadowing of a class of stochastic differential equations. The existence of(ω,Lδ)-periodic Lipschitz shadowing orbits and expression of shadowing distance are established. The numerical implementation approaches to the shadowing distance by the random Romberg algorithm are presented, and the convergence of this method is also proved to be mean-square. This ensures the feasibility of the numerical method. The practical use of these theorems and the associated algorithms is demonstrated in the numerical computations of the(ω,Lδ)-periodic Lipschitz shadowing orbits of the stochastic logistic equation.


2013 ◽  
Vol 336 ◽  
pp. 195-207
Author(s):  
Mohammad Mahdi Davoudi ◽  
Andreas Öchsner

This contribution investigates the numerical solution of the steady-state heat conduction equation. The finite difference method is applied to simple formulations of heat sources where still analytical solutions can be derived. Thus, the results of the numerical approach can be related to the exact solutions and conclusions on the accuracy obtained. In addition, the numerical implementation of different forms of boundary conditions, i.e. temperature and flux condition, is compared to the exact solution. It is found that the numerical implementation of coordinate dependent sources gives the exact result while temperature dependent sources are only approximately represented. Furthermore, the implementation of the mentioned boundary conditions gives the same results as the analytical reference solution.


2002 ◽  
Vol 01 (01) ◽  
pp. 1-15 ◽  
Author(s):  
VLADIMIR A. MANDELSHTAM ◽  
ARNOLD NEUMAIER

We review and further develop the recently introduced numerical approach [Phys. Rev. Lett. 86, 5031, (2001)] for scattering calculations based on a so called pseudo-time Schrödinger equation, which is in turn a modification of the damped Chebyshev polynomial expansion scheme [J. Chem. Phys. 103, 2903, (1995)]. The method utilizes a special energy-dependent form for the absorbing potential in the time-independent Schrödinger equation, in which the complex energy spectrum is mapped inside the unit disk Ek → uk, where uk are the eigenvalues of some explicitly known sparse matrix U. Most importantly for the numerical implementation, all the physical eigenvalues uk are the extreme eigenvalues of U (i.e. |uk| ≈ 1 for resonances and |uk| = 1 for the bound states), which allows one to extract these eigenvalues very efficiently by harmonic inversion of a pseudo-time autocorrelation function y(t) = ϕ T Ut ϕ using the filter diagonalization method. The computation of y(t) up to time t = 2T requires only T sparse real matrix-vector multiplications. We describe and compare different schemes, effectively corresponding to different choices of the energy-dependent absorbing potential, and test them numerically by calculating resonances of the HCO molecule. Our numerical tests suggest an optimal scheme that provide accurate estimates for most resonance states using a single autocorrelation function.


2020 ◽  
Vol 99 (3) ◽  
pp. 62-74
Author(s):  
M. Akat ◽  
◽  
R. Kosker ◽  
A. Sirma ◽  
◽  
...  

In this paper, a numerical approach is proposed based on the variation-of-constants formula for the numerical discretization Langevin-type equations. Linear and non-linear cases are treated separately. The proofs of convergence have been provided for the linear case, and the numerical implementation has been executed for the non-linear case. The order one convergence for the numerical scheme has been shown both theoretically and numerically. The stability of the numerical scheme has been shown numerically and depicted graphically.


1975 ◽  
Vol 26 ◽  
pp. 87-92
Author(s):  
P. L. Bender

AbstractFive important geodynamical quantities which are closely linked are: 1) motions of points on the Earth’s surface; 2)polar motion; 3) changes in UT1-UTC; 4) nutation; and 5) motion of the geocenter. For each of these we expect to achieve measurements in the near future which have an accuracy of 1 to 3 cm or 0.3 to 1 milliarcsec.From a metrological point of view, one can say simply: “Measure each quantity against whichever coordinate system you can make the most accurate measurements with respect to”. I believe that this statement should serve as a guiding principle for the recommendations of the colloquium. However, it also is important that the coordinate systems help to provide a clear separation between the different phenomena of interest, and correspond closely to the conceptual definitions in terms of which geophysicists think about the phenomena.In any discussion of angular motion in space, both a “body-fixed” system and a “space-fixed” system are used. Some relevant types of coordinate systems, reference directions, or reference points which have been considered are: 1) celestial systems based on optical star catalogs, distant galaxies, radio source catalogs, or the Moon and inner planets; 2) the Earth’s axis of rotation, which defines a line through the Earth as well as a celestial reference direction; 3) the geocenter; and 4) “quasi-Earth-fixed” coordinate systems.When a geophysicists discusses UT1 and polar motion, he usually is thinking of the angular motion of the main part of the mantle with respect to an inertial frame and to the direction of the spin axis. Since the velocities of relative motion in most of the mantle are expectd to be extremely small, even if “substantial” deep convection is occurring, the conceptual “quasi-Earth-fixed” reference frame seems well defined. Methods for realizing a close approximation to this frame fortunately exist. Hopefully, this colloquium will recommend procedures for establishing and maintaining such a system for use in geodynamics. Motion of points on the Earth’s surface and of the geocenter can be measured against such a system with the full accuracy of the new techniques.The situation with respect to celestial reference frames is different. The various measurement techniques give changes in the orientation of the Earth, relative to different systems, so that we would like to know the relative motions of the systems in order to compare the results. However, there does not appear to be a need for defining any new system. Subjective figures of merit for the various system dependon both the accuracy with which measurements can be made against them and the degree to which they can be related to inertial systems.The main coordinate system requirement related to the 5 geodynamic quantities discussed in this talk is thus for the establishment and maintenance of a “quasi-Earth-fixed” coordinate system which closely approximates the motion of the main part of the mantle. Changes in the orientation of this system with respect to the various celestial systems can be determined by both the new and the conventional techniques, provided that some knowledge of changes in the local vertical is available. Changes in the axis of rotation and in the geocenter with respect to this system also can be obtained, as well as measurements of nutation.


Author(s):  
J. S. Lally ◽  
R. J. Lee

In the 50 year period since the discovery of electron diffraction from crystals there has been much theoretical effort devoted to the calculation of diffracted intensities as a function of crystal thickness, orientation, and structure. However, in many applications of electron diffraction what is required is a simple identification of an unknown structure when some of the shape and orientation parameters required for intensity calculations are not known. In these circumstances an automated method is needed to solve diffraction patterns obtained near crystal zone axis directions that includes the effects of systematic absences of reflections due to lattice symmetry effects and additional reflections due to double diffraction processes.Two programs have been developed to enable relatively inexperienced microscopists to identify unknown crystals from diffraction patterns. Before indexing any given electron diffraction pattern, a set of possible crystal structures must be selected for comparison against the unknown.


Sign in / Sign up

Export Citation Format

Share Document