scholarly journals RESEARCH AND EXPERIMENTAL STUDIES OF STRESS-STRAIN STATE OF DISCRETE-CONTINUAL HARDENED MACHINE PARTS

Author(s):  
Oleg Veretelnik ◽  
Mykola M. Tkachuk ◽  
Serhii Kravchenko ◽  
Mariia Saverska ◽  
Serhii Kutsenko ◽  
...  

Research and experimental studies of stress-strain state of discrete-continual hardened machine parts are presented in this work. This hardening method is distinguished by incorporation of numerous hard spots into the surface layer of one of the bodies. Meanwhile the other part is covered by a continuous corundum layer. Correspondingly, a network of microchannels for lubricant is formed between the bodies. Furthermore the contact loads are intensified in the vicinity of the harder material in the discrete zones. As a result the strength and durability of the loaded parts is increased. The technological parameters of the hardening process have great impact on the resulting characteristics. In particular, this concern the shape of the discrete hardening zones and the material properties of the corundum layer. These factors were varied in stress-strain analyses of the contacting bodies. The dependence of the stress-strain state characteristics on the varied parameters was established. The justified recommendations regarding the technological parameters of the discrete-continual hardening have been developed. Keywords: stress-strain state,  discrete-continual hardening,  contact interaction, finite element method, contact pressure, machine parts

2019 ◽  
Vol 294 ◽  
pp. 03018 ◽  
Author(s):  
Sergei Kostritsa ◽  
Alexander Pshinko ◽  
Lyudmila Ursulyak ◽  
Andriy Kuzyshyn ◽  
Maxim Kramarenko ◽  
...  

Purpose.Provision of strength and durability of the main structural element of DPKr-2 diesel train -the leading car body. Methodology. A spatial solid-state 3-D model of the body is built and durability calculations are carried out concerning action of loads stipulated by regulatory documents operating in Ukraine. In particular, the following main estimated modes are considered: mode 1 – a notional safety mode which takes into account the possibility of considerable longitudinal forces arising during shunting movements, transportation and accidental collision; mode 2 – an operational mode which takes into account forces acting on a train during acceleration to constructional speed, coasting or braking from this speed while passing a curve. Results. Based on the results of theoretical and experimental studies a conclusion has been made that the leading car body construction of DPKr-2 diesel train meets the requirements of regulatory documents regarding strength and durability. Practical relevance. A complex of calculation and experimental work concerning assessment of stress-strain state of the leading car body of DPKr-2 diesel train under action of design and operational loads allowed the creation of construction which meets not only operational requirements but also strength and durability ones.


2019 ◽  
Vol 13 (2) ◽  
pp. 110-115
Author(s):  
Olena Krantovska ◽  
Mykola Petrov ◽  
Liubov Ksonshkevych ◽  
Matija Orešković ◽  
Sergii Synii ◽  
...  

The article describes a developed technique of a numerical simulation of the stress-strain state of complex-reinforced elements, which allows you to create models of double-span continuous. The performed experimental and theoretical studies allowed us to carry out the testing of the developed design model and to justify the reliability of the proposed numerical simulation methodology. The results of the experimental studies were compared with those of the theoretical studies. The theoretical calculus algorithm was developed by using the finite element method. Theoretical calculations were performed by using the mathematical-graphical environment software system LIRA-SOFT and the mathematical and computer program MATLAB. On the basis of the experimental research, the iso-fields of displacements and stresses in the materials of an eccentrically compressed beam with a small bend of the slab were constructed, which collapse behind the inclined narrow strip of concrete and displacements and stresses in the materials of the eccentrically stretched beam, which is destroyed due to the yield of the upper mounting armature.


2014 ◽  
Vol 1029 ◽  
pp. 1-7
Author(s):  
Rayna Dimitrova ◽  
Alexander Nedelchev ◽  
Antonio Nikolov

The deformation process during the plasma arc surfacing is analyzed by CAD/CAE software SysWeld under Visual Environment using 3D simulation. The aim of simulation is visualization of a temperature field and a stress-strain state distribution as resul ts of surfacing under typical technological parameters of plasma arc processing which could be used for education. Key w ords : CAD/CAE simulation , plasma arc surfacing , stress-strain state


2021 ◽  
Vol 274 ◽  
pp. 02009
Author(s):  
Denis Nikolenko ◽  
Maxim Nikolenko ◽  
Anastasiya Filippova

The article focuses on the importance of the strength and durability of highways due to the projected increase in freight traffic. It also describes the consequences of uneven distribution of loads in traffic lanes, depending on the prevailing traffic in each lane. The studies, that were carried out earlier by various scientists, were taken into account, thankfully to which results were obtained on the composition of the traffic flow, the difference in the loading of road pavements, as well as the stress-strain state of road structures. As a result, a model that reflects the dependence of the influence of the speed of movement of vehicles on the dynamic deformation of structures, was developed. Consequently, a number of design solutions were established to ensure the required strength of all structures.


2019 ◽  
Vol 20 (4) ◽  
pp. 285-292
Author(s):  
Sergei V. Smirnov ◽  
Vladimir V. Kopylov ◽  
Alexander R. Makarov ◽  
Alexander A. Vorobyev ◽  
Kirill V. Shkarin

The article describes the features developed by the authors of the profiling method of the piston skirt, provides the main parameters that affect the lubrication conditions of the piston skirt and the magnitude of mechanical losses. In computational studies, the basic formulas are given for determining the thickness of the oil layer in a piston skirt - cylinder sleeve conjunction to assess the nature of friction. To determine the deformations, the finite element method is used on the spatial model of the piston. To verify the finite element model, a stand for experimental studies was developed. The article describes the developed stand, the methodology and results of experimental studies of the stress-strain state of the two-piece piston skirt obtained at this stand and a comparative analysis of the results of the calculated and experimental studies of the stress-strain state of the two-piece piston skirt of a diesel engine. The research results showed that the developed stand can be used to verify mathematical models for calculating the stress-strain state of the piston skirt in the pilot production of internal combustion engine pistons to accelerate and reduce the cost of the piston design development process, as well as the results of experimental studies obtained at the stand, can be used as initial data for the developed mathematical model of the dynamics of the movement of the piston and the profiling of the piston skirt.


Author(s):  
Andrey Grabovskiy ◽  
Iryna Hrechka ◽  
Mykola M. Tkachuk ◽  
Mariia Saverska ◽  
Serhii Kutsenko ◽  
...  

Elements of constructions of modern military and civil vehicles usually work in conditions of high contact loads. Аt the stage of their creation, strength studies are carried out using traditional models of contact of bodies of nominal shape. Нowever, the real structural elements have deviations from such models, which are due to design and technological factors: macrodeviation of the shape, surface roughness, strengthening etc. Such perturbations of nominal parameters have a significant effect on the distribution of contact pressure between the elements of military and civil vehicles, however, traditional methods for studying the stress-strain state of contacting bodies do not make it possible to take such factors into account fully, collectively and exhaustively. To eliminate the existing contradiction, a semi-analytical method is proposed, which is based on the development of variational principles and boundary-element sampling. The created models make it possible to take into account the regularities of the influence of shape perturbations and properties of the surface layers of contacting bodies on the stress-strain state. As a result, it becomes possible to justify favorable perturbations by strength criteria. Such models and methods are offered to the work, and on their basis it’s proposed the implementation of research elements of military and civil vehicles for appointment to ensure world class the technical and tactically technical characteristics. Ключові слова: military and civilian vehicles; design and technological factor; stress-strain state; contact interaction; strength


Author(s):  
Andrey Grabovskiy ◽  
Mykola А. Tkachuk ◽  
Natalia Domina ◽  
Ganna Tkachuk ◽  
Olha Ishchenko ◽  
...  

  In many constructions, their elements are in contact with nominally matching (congruent) surfaces. In reality, this contact is disturbed due to deviations in the shape of these surfaces from the nominal. To study the effect of this perturbation on the distribution of contact pressure, the analysis of the stress-strain state of the body system of punched sheet-die is carried out. The middle element of this system deviates from the nominally flat shape. This causes a change in the contact pressure distribution. The proportionality between the clamping force and the level of contact pressure is also lost. The reliability and accuracy of the results obtained by numerical calculation have been experimentally confirmed. Keywords: stress-strain state; contact pressure; contact interaction; method of variational inequalities; Kalker variational principle; finite element method


2019 ◽  
Vol 109 ◽  
pp. 00047
Author(s):  
Serhii Kurnosov ◽  
Volodymyr Zerkal

A method for calculating gas permeability of the rock massif depending on its stress-strain state is presented. By using methods of the mine experimental studies, influence of mining operations in the adjacent long walls on intensity of gas release from the previously worked-out long-pillar was determined, as well as impact of the massif stress-strain state on efficiency of the drainage boreholes. Formulas were obtained for calculating coefficients of the impact of zones with static and dynamic abutment pressure on intensity of gas draining in the previously worked-out long-pillar.


Author(s):  
E. E. Richter ◽  

The element of the upper structure of the railway track - the switch counter-rail lining is studied. A variant of the serial design of the PKZhDL-65-4 counter-rail lining is considered. The analysis of the failure rate of counter-rail linings is carried out, and the results of observations of the condition of the linings in different regions are presented. The destruction zone is localized and its character as a multi-cycle fatigue destruction is determined. The information about the conducted complex of experimental studies for investigation of the stress-strain state in the dangerous zone of the lining is presented. To carry out the design studies, the design schemes of the counter-rail lining were developed. Calculated studies of the influence of various factors on the level of stresses acting in the hazardous area of the structure are performed. The influence of the type of the design scheme, the stiffness of the rubber shock-absorbing lining and the properties of the sleeper material is studied. Variants of counter-rail lining designs for reducing the level of stresses acting in the dangerous zone are proposed. Computational studies were conducted to optimize the proposed lining options in order to reduce material consumption. The results of testing of new lining structures on the switches of the South Ural Railway are presented. The information about the conducted complex of experimental studies for investigation of the stress-strain state in the dangerous zone of the lining is presented. To carry out the design studies, the design schemes of the counter-rail lining were developed. Calculated studies of the influence of various factors on the level of stresses acting in the hazardous area of the structure are performed. The influence of the type of the design scheme, the stiffness of the rubber shock-absorbing lining and the properties of the sleeper material is studied. Variants of counter-rail lining designs for reducing the level of stresses acting in the dangerous zone are proposed. Computational studies were conducted to optimize the proposed lining options in order to reduce material consumption. The results of testing of new lining structures on the switches of the South Ural Railway are presented.


Sign in / Sign up

Export Citation Format

Share Document