scholarly journals Size effect for samples with blunt and sharp notches using linear cohesive crack law

2019 ◽  
Author(s):  
G Di Luzio
Keyword(s):  
2019 ◽  
Vol 215 ◽  
pp. 193-210 ◽  
Author(s):  
Christian Carloni ◽  
Gianluca Cusatis ◽  
Marco Salviato ◽  
Jia-Liang Le ◽  
Christian G. Hoover ◽  
...  

2007 ◽  
Vol 74 (6) ◽  
pp. 1134-1141 ◽  
Author(s):  
Zdeněk Bažant ◽  
Peter Grassl

Because the observed size effect follows neither the strength theory nor the linear elastic fracture mechanics, the delamination fracture of laminate-foam sandwiches under uniform bending moment is treated by the cohesive crack model. Both two-dimensional geometrically nonlinear finite element analysis and one-dimensional representation of skin (or facesheet) as a beam on elastic-softening foundation are used. The use of the latter is made possible by realizing that the effective elastic foundation stiffness depends on the ratio of the critical wavelength of periodic skin wrinkles to the foam core thickness, and a simple description of the transition from shortwave to longwave wrinkling is obtained by asymptotic matching. Good agreement between both approaches is achieved. Skin imperfections (considered proportional to the the first eigenmode of wrinkling), are shown to lead to strong size dependence of the nominal strength. For large imperfections, the strength reduction due to size effect can reach 50%. Dents from impact, though not the same as imperfections, might be expected to cause as a similar size effect. Using proper dimensionless variables, numerical simulations of cohesive delamination fracture covering the entire practical range are performed. Their fitting, heeding the shortwave and longwave asymptotics, leads to an approximate imperfection-dependent size effect law of asymptotic matching type. Strong size effect on postpeak energy absorption, important for impact analysis, is also demonstrated. Finally, discrepancies among various existing formulas for critical stress at periodic elastic wrinkling are explained by their applicability to different special cases in the shortwave-longwave transition.


10.14311/608 ◽  
2004 ◽  
Vol 44 (5-6) ◽  
Author(s):  
Z. P. Bažant ◽  
Q. Yu

Presented is a concise summary of recent Northwestern University studies of six new problems. First, the decrease of fracture energy during crack propagation through a boundary layer, documented by Hu and Wittmann, is shown to be captured by a cohesive crack model in which the softening tail slope depends on the distance from the boundary (which causes an apparent size effect on fracture energy and implies that the nonlocal damage model is more fundamental than the cohesive crack model). Second, an improved universal size effect law giving a smooth transition between failures at large cracks (or notches) and at crack initiation is presented. Third, a recent renewed proposal that the nominal strength variation as a function of notch depth be used for measuring fracture energy is critically examined. Fourth, numerical results and a formula describing the size effect of finite-angle notches are presented. Fifth, a new size effect law derivation from dimensional analysis coupled with asymptotic matching is given. Finally, an improved code-type formula for shear capacity of R.C. beams is proposed. 


2013 ◽  
Vol 80 (5) ◽  
Author(s):  
Qiang Yu ◽  
Zdeněk P. Bažant ◽  
Jia-Liang Le

The size effect in the failure of a hybrid adhesive joint of a metal with a fiber-polymer composite, which has been experimentally demonstrated and analytically formulated in preceding two papers, is here investigated numerically. Cohesive finite elements with a mixed-mode fracture criterion are adopted to model the adhesive layer in the metal-composite interface. A linear traction-separation softening law is assumed to describe the damage evolution at debonding in the adhesive layer. The results of simulations agree with the previously measured load-displacement curves of geometrically similar hybrid joints of various sizes, with the size ratio of 1:4:12. The effective size of the fracture process zone is identified from the numerically simulated cohesive stress profile at the peak load. The fracture energy previously identified analytically by fitting the experimentally observed size effect curves agrees well with the fracture energy of the cohesive crack model obtained numerically by optimal fitting of the test data.


Sign in / Sign up

Export Citation Format

Share Document