scholarly journals Vibration analysis of the oscillation support of column load cells in low speed axle-group weigh-in-motion system

ACTA IMEKO ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 63
Author(s):  
Zhengchuang Lai ◽  
Xiaoxiang Yang ◽  
Jinhui Yao

Under the condition of dynamic weighing, the support types of the column load cells can be divided into elastic support and oscillation support. The weighing system with oscillation support shows significant vibration characteristics, which affects the weighing accuracy and the fatigue life of the load sensor. In this paper, the dynamic characteristics of the oscillation supporting column load cell in low speed axle-group weigh-in-motion system are analysed. It is found that the restoring force of the oscillation support is approximately proportional to the oscillation angle and the applied vertical load. The dynamic equation of the oscillation support vibration of the column load cells established by means of d’Alembert principle. The numerical calculations of the dynamic response of the weighing system with oscillation support are carried out in the free state and dynamic weighing state respectively. The factors affecting the amplitude and recovery time of the support vibration are obtained. This study provides a reference for the analysis of the dynamic weighing accuracy.

ACTA IMEKO ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 69
Author(s):  
Zhengchuang Lai ◽  
Xiaoxiang Yang ◽  
Jinhui Yao

The axle-group weigh-in-motion system has two functions: static weighing and dynamic weighing. According to the weighing model, the accuracy of dynamic weighing is affected by the static performance. This paper analyses the size of various factors affecting the static performance, such as sensor tilt installation, platform deformation, platform tilt installation, and these errors will lead to sensor swing, bearing head tilt, gravity line of action and sensor axis direction is not consistent, thus affecting the static weighing accuracy. However static calibration is the best way to reduce or even eliminate the above errors. The dynamic truck scale of different manufacturers with or without static calibration is used in the test process. The results show that the dynamic performance index can meet the requirements only after the static calibration is used.


2000 ◽  
Vol 7 (2/3) ◽  
pp. 219
Author(s):  
L. Brulant-Reversat ◽  
P. Arfos ◽  
P. Monteil

Author(s):  
Araliya Mosleh ◽  
Pedro Alves Costa ◽  
Rui Calçada

The present paper focuses on the numerical modeling of a weigh-in-motion system developed with the purpose of assessing the static loads imposed by the train onto the track infrastructure. Weigh-in-motion systems would be useful in overcoming the disadvantages typical of the conventional static weighing such as costs and traffic management. However, contrary to the conventional static weighing, weigh-in-motion systems do not allow a direct measurement of the static load since the train–track dynamic interaction gives rise to dynamic loads that are added to the static ones. This study investigates how train speed and track unevenness affect the loads assessed by the weigh-in-motion system. In order to achieve that goal, a comprehensive statistical study was performed based on an extensive amount of calculations. Finally, based on the conclusions and trend identified through the comprehensive parametric study, an approach is proposed to correct the direct result given by the weigh-in-motion system in order to obtain an estimation of the static load.


2011 ◽  
Vol 135-136 ◽  
pp. 1123-1128
Author(s):  
Qian Yu Xu ◽  
Yu Qin ◽  
Juan Li ◽  
Hui Hui Zheng ◽  
Fa Wu Yang

The dynamic weighing technology is multi-domain comprehensive technology, including the mechanics of materials, dynamics, the technology of sensor, the technology of electronic information and so on. Vehicle weigh-in-motion system is a detection system which is used to measure the weight of the moving vehicle. With the development of the transport industry output and commercial trade, Vehicle weigh-in-motion technology is playing a more and more important role. At the same time, the accuracy of the weigh-in-motion data has become the centre of attention. In this paper, use the method of least square and polynomial fitting and the MATLAB mathematical software, by studying and analyzing a mass of weigh-in-motion data,the fitting curve of the vehicle weigh in different speeds is obtained. According the variation law of fitting curve, further improvement need to do in certain standard and weigh carefully as to the true quality when the vehicle is in some speed region.


2021 ◽  
Vol 11 (2) ◽  
pp. 745
Author(s):  
Sylwia Stawska ◽  
Jacek Chmielewski ◽  
Magdalena Bacharz ◽  
Kamil Bacharz ◽  
Andrzej Nowak

Roads and bridges are designed to meet the transportation demands for traffic volume and loading. Knowledge of the actual traffic is needed for a rational management of highway infrastructure. There are various procedures and equipment for measuring truck weight, including static and in weigh-in-motion techniques. This paper aims to compare four systems: portable scale, stationary truck weigh station, pavement weigh-in-motion system (WIM), and bridge weigh-in-motion system (B-WIM). The first two are reliable, but they have limitations as they can measure only a small fraction of the highway traffic. Weigh-in-motion (WIM) measurements allow for a continuous recording of vehicles. The presented study database was obtained at a location that allowed for recording the same traffic using all four measurement systems. For individual vehicles captured on a portable scale, the results were directly compared with the three other systems’ measurements. The conclusion is that all four systems produce the results that are within the required and expected accuracy. The recommendation for an application depends on other constraints such as continuous measurement, installation and operation costs, and traffic obstruction.


2013 ◽  
Vol 721 ◽  
pp. 479-482 ◽  
Author(s):  
Yan Xia Wang ◽  
Chun Hui Bao ◽  
Chun Ling Fan

The multi-sensor data fusion techniques is discussed in dynamic weighing system based on the data measured from ultrasonic sensors, speed sensors, capacitive sensors and load cells. This new method can greatly increase the measure precision of the dynamic weighing systems, at the same time it can effectively reduce noise, vibration, electromagnetic interference and other environmental factors on the influence of dynamic weighing system measurement. Judging from the simulation result, this new method proves to be more accurate and stable than ordinary processing methods.


Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3272 ◽  
Author(s):  
Dawid Rys

Weigh-in-motion systems are installed in pavements or on bridges to identify and reduce the number of overloaded vehicles and minimise their adverse effect on road infrastructure. Moreover, the collected traffic data are used to obtain axle load characteristics, which are very useful in road infrastructure design. Practical application of data from weigh-in-motion has become more common recently, which calls for adequate attention to data quality. This issue is addressed in the presented paper. The aim of the article is to investigate the accuracy of 77 operative weigh-in-motion stations by analysing steering axle load spectra. The proposed methodology and analysis enabled the identification of scale and source of errors that occur in measurements delivered from weigh-in-motion systems. For this purpose, selected factors were investigated, including the type of axle load sensor, air temperature and vehicle speed. The results of the analysis indicated the obvious effect of the axle load sensor type on the measurement results. It was noted that systematic error increases during winter, causing underestimation of axle loads by 5% to 10% for quartz piezoelectric and bending beam load sensors, respectively. A deterioration of system accuracy is also visible when vehicle speed decreases to 30 km/h. For 25% to 35% of cases, depending on the type of sensor, random error increases for lower speeds, while it remains at a constant level at higher speeds. The analysis also delivered a standard steering axle load distribution, which can have practical meaning in the improvement of weigh-in-motion accuracy and traffic data quality.


Sign in / Sign up

Export Citation Format

Share Document