A new strategy to estimate static loads for the dynamic weighing in motion of railway vehicles

Author(s):  
Araliya Mosleh ◽  
Pedro Alves Costa ◽  
Rui Calçada

The present paper focuses on the numerical modeling of a weigh-in-motion system developed with the purpose of assessing the static loads imposed by the train onto the track infrastructure. Weigh-in-motion systems would be useful in overcoming the disadvantages typical of the conventional static weighing such as costs and traffic management. However, contrary to the conventional static weighing, weigh-in-motion systems do not allow a direct measurement of the static load since the train–track dynamic interaction gives rise to dynamic loads that are added to the static ones. This study investigates how train speed and track unevenness affect the loads assessed by the weigh-in-motion system. In order to achieve that goal, a comprehensive statistical study was performed based on an extensive amount of calculations. Finally, based on the conclusions and trend identified through the comprehensive parametric study, an approach is proposed to correct the direct result given by the weigh-in-motion system in order to obtain an estimation of the static load.

ACTA IMEKO ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 63
Author(s):  
Zhengchuang Lai ◽  
Xiaoxiang Yang ◽  
Jinhui Yao

Under the condition of dynamic weighing, the support types of the column load cells can be divided into elastic support and oscillation support. The weighing system with oscillation support shows significant vibration characteristics, which affects the weighing accuracy and the fatigue life of the load sensor. In this paper, the dynamic characteristics of the oscillation supporting column load cell in low speed axle-group weigh-in-motion system are analysed. It is found that the restoring force of the oscillation support is approximately proportional to the oscillation angle and the applied vertical load. The dynamic equation of the oscillation support vibration of the column load cells established by means of d’Alembert principle. The numerical calculations of the dynamic response of the weighing system with oscillation support are carried out in the free state and dynamic weighing state respectively. The factors affecting the amplitude and recovery time of the support vibration are obtained. This study provides a reference for the analysis of the dynamic weighing accuracy.


ACTA IMEKO ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 69
Author(s):  
Zhengchuang Lai ◽  
Xiaoxiang Yang ◽  
Jinhui Yao

The axle-group weigh-in-motion system has two functions: static weighing and dynamic weighing. According to the weighing model, the accuracy of dynamic weighing is affected by the static performance. This paper analyses the size of various factors affecting the static performance, such as sensor tilt installation, platform deformation, platform tilt installation, and these errors will lead to sensor swing, bearing head tilt, gravity line of action and sensor axis direction is not consistent, thus affecting the static weighing accuracy. However static calibration is the best way to reduce or even eliminate the above errors. The dynamic truck scale of different manufacturers with or without static calibration is used in the test process. The results show that the dynamic performance index can meet the requirements only after the static calibration is used.


2011 ◽  
Vol 135-136 ◽  
pp. 1123-1128
Author(s):  
Qian Yu Xu ◽  
Yu Qin ◽  
Juan Li ◽  
Hui Hui Zheng ◽  
Fa Wu Yang

The dynamic weighing technology is multi-domain comprehensive technology, including the mechanics of materials, dynamics, the technology of sensor, the technology of electronic information and so on. Vehicle weigh-in-motion system is a detection system which is used to measure the weight of the moving vehicle. With the development of the transport industry output and commercial trade, Vehicle weigh-in-motion technology is playing a more and more important role. At the same time, the accuracy of the weigh-in-motion data has become the centre of attention. In this paper, use the method of least square and polynomial fitting and the MATLAB mathematical software, by studying and analyzing a mass of weigh-in-motion data,the fitting curve of the vehicle weigh in different speeds is obtained. According the variation law of fitting curve, further improvement need to do in certain standard and weigh carefully as to the true quality when the vehicle is in some speed region.


2021 ◽  
Vol 11 (2) ◽  
pp. 745
Author(s):  
Sylwia Stawska ◽  
Jacek Chmielewski ◽  
Magdalena Bacharz ◽  
Kamil Bacharz ◽  
Andrzej Nowak

Roads and bridges are designed to meet the transportation demands for traffic volume and loading. Knowledge of the actual traffic is needed for a rational management of highway infrastructure. There are various procedures and equipment for measuring truck weight, including static and in weigh-in-motion techniques. This paper aims to compare four systems: portable scale, stationary truck weigh station, pavement weigh-in-motion system (WIM), and bridge weigh-in-motion system (B-WIM). The first two are reliable, but they have limitations as they can measure only a small fraction of the highway traffic. Weigh-in-motion (WIM) measurements allow for a continuous recording of vehicles. The presented study database was obtained at a location that allowed for recording the same traffic using all four measurement systems. For individual vehicles captured on a portable scale, the results were directly compared with the three other systems’ measurements. The conclusion is that all four systems produce the results that are within the required and expected accuracy. The recommendation for an application depends on other constraints such as continuous measurement, installation and operation costs, and traffic obstruction.


Author(s):  
A.A. Komarov ◽  

The practices of hazardous and unique facilities’ construction imply that specific attention is paid to the issues of safety. Threats associated with crash impacts caused by moving cars or planes are considered. To ensure safety of these construction sites it is required to know the potential dynamic loads and their destructive capacity. This article considers the methodology of reducing dynamic loads associated with impacts caused by moving collapsing solids and blast loads to equivalent static loads. It is demonstrated that practically used methods of reduction of dynamic loads to static loads are based in schematization only of the positive phase of a dynamic load in a triangle forms are not always correct and true. The historical roots of this approach which is not correct nowadays are shown; such approach considered a detonation explosion as a source of dynamic load, including TNT and even a nuclear weapon. Application of the existing practices of reduction of dynamic load to static load for accidental explosions in the atmosphere that occur in deflagration mode with a significant vacuumization phase may cause crucial distortion of predicted loads for the construction sites. This circumstance may become a matter of specific importance at calculations of potential hazard of impacts and explosions in unique units — for instance, in the nuclear plants. The article considers a situation with a plane crash, the building structure load parameters generated at the impact caused by a plane impact and the following deflagration explosion of fuel vapors are determined.


2021 ◽  
Vol 49 (4) ◽  
pp. 962-968
Author(s):  
Péter Csavajda ◽  
Péter Böröcz

Most of the shipped products are sensitive against shock and vibration events during the distribution. Various cushioning materials are usually used to prevent the product damages. During the design process the protective packaging system is developed by the engineers based on the cushion and vibration transmissibility features (ie. cushion curve) of the material used. However, after the assembly of the packaged-product, these are stored for various long periods in warehouse. During this time the products pre-load the cushioning material and its parameters can be changed. The main goal of this study is to evaluate the vibration transmissibility of PE and XPE cushioning material at varied storage (pre-loaded) time and static load conditions. Four different kinds of duration (1 hour, 10 hours, 100 hours and 1000 hours) were used for the pre-loading period at three different static loads (3.488 kPa, 4.651 kPa, and 6.976 kPa), and then at 0.5 oct/min sine sweep vibration the peak frequencies of response and vibration transmissibility, and damping ratio were determined. The results show that the effect of pre-loading is minimal by PE material, but can influence the resonance frequencies by XPE cushioning material. The findings of this study help the packaging engineers to understand better the mechanism of these cushioning materials and to design suitable protective packaging systems.


Sign in / Sign up

Export Citation Format

Share Document