scholarly journals The 4D B-spline method of calculating left ventricular functional parameters of cardiac MRI to evaluate myocardial injury of the apical segment in patients with myocarditis: a case-controlled observational study

2020 ◽  
Vol 10 (11) ◽  
pp. 2133-2143
Author(s):  
Xin-Xiang Zhao ◽  
Wei-Feng Yuan
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amir Moussavi ◽  
Sophie Mißbach ◽  
Claudia Serrano Ferrel ◽  
Hasti Ghasemipour ◽  
Kristin Kötz ◽  
...  

AbstractCardiac MRI in rhesus macaques, a species of major relevance for preclinical studies on biological therapies, requires artificial ventilation to realize breath holding. To overcome this limitation of standard cine MRI, the feasibility of Real-Time (RT) cardiac MRI has been tested in a cohort of ten adult rhesus macaques using a clinical MR-system. In spite of lower tissue contrast and sharpness of RT-MRI, cardiac functions were similarly well assessed by RT-MRI compared to cine MRI (similar intra-subject repeatability). However, systematic underestimation of the end-diastolic volume (31 ± 9%), end-systolic volume (20 ± 11%), stroke volume (40 ± 12%) and ejection fraction (13 ± 9%) hamper the comparability of RT-MRI results with those of other cardiac MRI methods. Yet, the underestimations were very consistent (< 5% variability) for repetitive measurements, making RT-MRI an appropriate alternative to cine MRI for longitudinal studies. In addition, RT-MRI enabled the analysis of cardio-respiratory coupling. All functional parameters showed lower values during expiration compared to inspiration, most likely due to the pressure-controlled artificial ventilation. In conclusion, despite systematic underestimation of the functional parameters, RT-MRI allowed the assessment of left ventricular function in macaques with significantly less experimental effort, measurement time, risk and burden for the animals compared to cine MRI.


2019 ◽  
Vol 68 (5) ◽  
pp. 1207-1232 ◽  
Author(s):  
Michael J. Price ◽  
Cindy L. Yu ◽  
David A. Hennessy ◽  
Xiaodong Du

2021 ◽  
Vol 59 (1) ◽  
pp. 51-57
Author(s):  
Daniela Maria Cardinale ◽  
Martina Zaninotto ◽  
Carlo Maria Cipolla ◽  
Claudio Passino ◽  
Mario Plebani ◽  
...  

AbstractDrug-induced cardiotoxicity is a major clinical problem; cardiotoxic drugs may induce both cardiac dysfunction and myocardial injury. Several recent studies reported that cardiac troponins measured with high-sensitivity methods (hs-cTn) can enable the early detection of myocardial injury related to chemotherapy or abuse of drugs that are potentially cardiotoxic. Several authors have some concerns about the standard definition of cardiotoxicity, in particular, regarding the early evaluation of chemotherapy cardiotoxicity in cancer patients. Several recent studies using the hs-cTn assay indicate that myocardial injury may precede by some months or years the diagnosis of heart failure (HF) based on the evaluation of left ventricular ejection fraction (LVEF). Accordingly, hs-cTn assay should considered to be a reliable laboratory test for the early detection of asymptomatic or subclinical cardiotoxic damage in patients undergoing cancer chemotherapy. In accordance with the Fourth Universal Definition of Myocardial Infarction and also taking into account the recent experimental and clinical evidences, the definition of drug-cardiotoxicity should be updated considering the early evaluation of myocardial injury by means of hs-cTn assay. It is conceivable that the combined use of hs-cTn assay and cardiac imaging techniques for the evaluation of cardiotoxicity will significantly increase both diagnostic sensitivity and specificity, and also better prevent chemotherapy-related left ventricular (LV) dysfunction and other adverse cardiac events. However, large randomized clinical trials are needed to evaluate the cost/benefit ratio of standardized protocols for the early detection of cardiotoxicity using hs-cTn assay in patients receiving chemotherapy for malignant diseases.


2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
K Fischer ◽  
C Riecker ◽  
S Overney ◽  
M Stucki ◽  
H Tanner ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – EU funding. Main funding source(s): European Association of Cardiothoracic Anaesthesiologists Research Grant Background Despite everyday use of electrical interventions in cardiovascular care, the extent and type of concomitant myocardial injury is not fully understood. Current literature disagrees about the question whether and how cardioversion or defibrillation damage the myocardium, especially when serologic markers are used. Such markers are not always cardiac-specific, nor diagnostic for type and region of myocardial injury. These limitations may be overcome by parametric T1 and T2 mapping. We aimed to investigate whether the acute and long-term impact of electrical cardioversion on myocardial structure and function is detectable using CMR imaging. Methods Patients scheduled for elective cardioversion were enrolled to undergo three CMR exams (3 Tesla): on the morning prior to cardioversion to assess pre-existing injury; two to five hours after cardioversion to assess the acute response; and six to ten weeks later to investigate chronic injury. The CMR exam studied left ventricular (LV) function, T2 mapping to measure edema, and extracellular volume (ECV) from T1 maps to measure diffuse fibrosis. Both the degree of injury and proportion (%) of myocardial area affected were analysed. Results Eight patients completed the study, requiring 1-2 shocks (totalling 120-300 J biphasic energy) to achieve sinus rhythm. LV ejection fraction increased after cardioversion from 47 ± 13% to 55 ± 15% (p = 0.020), and was 52 ± 16% at the third exam (p = 0.199). Even prior to intervention, some patients showed edema (baseline T2 &gt; 40ms) afflicting 49 ± 23% of their LV myocardium. Area affected by edema expanded to 72 ± 18% after cardioversion (p = 0.002) and returned to 54 ± 24% by the third exam. T2 rose from baseline (40.4 ± 1.8ms) after cardioversion acutely to 44.1 ± 5.2ms (p = 0.028) and normalized until the late exam (40.8 ± 3.1ms). Myocardial area affected by diffuse fibrosis (ECV &gt; 30%) was 28.3 ± 9.4% at baseline and 38.8 ± 18.9% late after cardioversion (p = 0.018). Pathologic T2 increases (indicative of edema) were not observed in all patients, but individuals with higher baseline ECV also experienced greater T2 increase after cardioversion (r = 0.840, p = 0.036). Conclusion Elective cardioversion improves LV systolic function, but also aggravates myocardial edema and possibly adds to diffuse fibrosis during several weeks thereafter. Such sequelae of cardioversion were observed mainly in patients with a greater burden of pre-existing myocardial injury. More data is needed to corroborate these preliminary findings and to study whether this type of myocardial injury predicts worse outcome. Moreover, changes in CMR markers caused by electrical interventions including defibrillation, may have the potential to confound diagnostic assessments of the underlying cardiac injury. Abstract Figure


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Mojdeh Mirmomen ◽  
Andrew E. Arai ◽  
Evrim B. Turkbey ◽  
Andrew J. Bradley ◽  
Julie C. Sapp ◽  
...  

AbstractIn this work, we sought to delineate the prevalence of cardiothoracic imaging findings of Proteus syndrome in a large cohort at our institution. Of 53 individuals with a confirmed diagnosis of Proteus syndrome at our institution from 10/2001 to 10/2019, 38 individuals (men, n = 23; average age = 24 years) underwent cardiothoracic imaging (routine chest CT, CT pulmonary angiography and/or cardiac MRI). All studies were retrospectively and independently reviewed by two fellowship-trained cardiothoracic readers. Disagreements were resolved by consensus. Differences between variables were analyzed via parametric and nonparametric tests based on the normality of the distribution. The cardiothoracic findings of Proteus syndrome were diverse, but several were much more common and included: scoliosis from bony overgrowth (94%), pulmonary venous dilation (62%), band-like areas of lung scarring (56%), and hyperlucent lung parenchyma (50%). In addition, of 20 individuals who underwent cardiac MRI, 9/20 (45%) had intramyocardial fat, mostly involving the endocardial surface of the left ventricular septal wall. There was no statistically significant difference among the functional cardiac parameters between individuals with and without intramyocardial fat. Only one individual with intramyocardial fat had mildly decreased function (LVEF = 53%), while all others had normal ejection fraction.


Infection ◽  
2021 ◽  
Author(s):  
Stéphanie Bieber ◽  
Angelina Kraechan ◽  
Johannes C. Hellmuth ◽  
Maximilian Muenchhoff ◽  
Clemens Scherer ◽  
...  

Abstract Purpose SARS-COV-2 infection can develop into a multi-organ disease. Although pathophysiological mechanisms of COVID-19-associated myocardial injury have been studied throughout the pandemic course in 2019, its morphological characterisation is still unclear. With this study, we aimed to characterise echocardiographic patterns of ventricular function in patients with COVID-19-associated myocardial injury. Methods We prospectively assessed 32 patients hospitalised with COVID-19 and presence or absence of elevated high sensitive troponin T (hsTNT+ vs. hsTNT-) by comprehensive three-dimensional (3D) and strain echocardiography. Results A minority (34.3%) of patients had normal ventricular function, whereas 65.7% had left and/or right ventricular dysfunction defined by impaired left and/or right ventricular ejection fraction and strain measurements. Concomitant biventricular dysfunction was common in hsTNT+ patients. We observed impaired left ventricular (LV) global longitudinal strain (GLS) in patients with myocardial injury (-13.9% vs. -17.7% for hsTNT+ vs. hsTNT-, p = 0.005) but preserved LV ejection fraction (52% vs. 59%, p = 0.074). Further, in these patients, right ventricular (RV) systolic function was impaired with lower RV ejection fraction (40% vs. 49%, p = 0.001) and reduced RV free wall strain (-18.5% vs. -28.3%, p = 0.003). Myocardial dysfunction partially recovered in hsTNT + patients after 52 days of follow-up. In particular, LV-GLS and RV-FWS significantly improved from baseline to follow-up (LV-GLS: -13.9% to -16.5%, p = 0.013; RV-FWS: -18.5% to -22.3%, p = 0.037). Conclusion In patients with COVID-19-associated myocardial injury, comprehensive 3D and strain echocardiography revealed LV dysfunction by GLS and RV dysfunction, which partially resolved at 2-month follow-up. Trial registration COVID-19 Registry of the LMU University Hospital Munich (CORKUM), WHO trial ID DRKS00021225.


Author(s):  
Shinya Ito ◽  
Akihiro Isotani ◽  
Kyohei Yamaji ◽  
Kenji Ando

Abstract Background  Löffler endocarditis is a condition characterized by cardiac infiltration of eosinophils. Cardiac magnetic resonance imaging (MRI) is a modality for the diagnosis of myocardial damage. Case summary  This is the case of a 77-year-old man with acute decompensated heart failure who was admitted. Transthoracic echocardiography showed preserved left ventricular (LV) systolic function along with LV thrombi attached to the septo-apical wall and the posterior wall, consistent with Löffler endocarditis. Cardiac MRI revealed obliteration of the LV apex and partial filling of the LV cavity, as well as near circumferential subendocardial late gadolinium enhancement (LGE) in the mid- and apical segments. T2-weighted images showed a near circumferential high-intensity area of the LV subendocardial muscle in the mid- and apical segments. High-dose corticosteroids and intravenous heparin were initiated, followed by maintenance warfarin therapy. At 18 months, follow-up cardiac MRI revealed the disappearance of the LV thrombi, and a reduction of LGE, as well as high-intensity areas in the T2-weighted images. Discussion  The high-intensity area of T2-weighted images indicate the presence of subendocardial oedema. Eosinophil-mediated heart damage evolves through three stages: (i) acute necrotic, (ii) thrombotic, and (iii) fibrotic stages. Since the deposition of toxic eosinophil granule proteins and eosinophil infiltration injured the endocardium, the first-line treatment for Löffler endocarditis is corticosteroid therapy. In this case, LGE in the subendocardium and the high-intensity area in the T2-weighted images were reduced at 18 months. High-intensity areas of T2-weighted images in the acute phase might indicate the possibility of therapeutic response to corticosteroid therapy.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
A. Khalid ◽  
M. N. Naeem ◽  
P. Agarwal ◽  
A. Ghaffar ◽  
Z. Ullah ◽  
...  

AbstractIn the current paper, authors proposed a computational model based on the cubic B-spline method to solve linear 6th order BVPs arising in astrophysics. The prescribed method transforms the boundary problem to a system of linear equations. The algorithm we are going to develop in this paper is not only simply the approximation solution of the 6th order BVPs using cubic B-spline, but it also describes the estimated derivatives of 1st order to 6th order of the analytic solution at the same time. This novel technique has lesser computational cost than numerous other techniques and is second order convergent. To show the efficiency of the proposed method, four numerical examples have been tested. The results are described using error tables and graphs and are compared with the results existing in the literature.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Ahmed Ayuna ◽  
Nik Abidin

Abstract Background Anthracycline-induced cardiotoxicity has been classified based on its onset into acute, early, and late. It may have a significant burden on the quality and quantity of life of those exposed to this class of medication. Currently, there are several ongoing debates on the role of different measures in the primary prevention of cardiotoxicity in cancer survivors. Our article aims to focus on the role of neurohormonal blockers in the primary prevention of anthracycline-induced cardiotoxicity, whether it is acute, early, or late onset. Main body of the abstract PubMed and Google Scholar database were searched for the relevant articles; we reviewed and appraised 15 RCTs, and we found that angiotensin-converting enzyme inhibitors (ACEI) and B-blockers were the most commonly used agents. Angiotensin II receptor blockers (ARBs) and mineralocorticoid receptor antagonists (MRAs) were used in a few other trials. The follow-up period was on the range of 1–156 weeks (mode 26 weeks). Left ventricular ejection fraction (LVEF), left ventricular diameters, and diastolic function were assessed by either echocardiogram or occasionally by cardiac magnetic resonance imaging (MRI). The occurrence of myocardial injury was assessed by troponin I. It was obvious that neurohormonal blockers reduced the occurrence of LVEF and myocardial injury in 14/15 RCTs. Short conclusion Beta-blockers, especially carvedilol and ACEI, especially enalapril, should be considered for the primary prevention of acute- and early-onset cardiotoxicity. ARB and MRA are suitable alternatives when patients are intolerant to ACE-I and B-blockers. We recommend further studies to explore and establish the role of neurohormonal blockers in the primary prevention of the acute-, early-, and late-onset cardiotoxicity.


Sign in / Sign up

Export Citation Format

Share Document