scholarly journals Proteomic analysis of oxidative stress response in human umbilical vein endothelial cells (HUVECs): role of heme oxygenase 1 (HMOX1) in hypoxanthine-induced oxidative stress in HUVECs

2020 ◽  
Vol 9 (2) ◽  
pp. 218-231
Author(s):  
Pei Zhu ◽  
Tao Qi ◽  
Zhan-Sen Huang ◽  
Hao Li ◽  
Bo Wang ◽  
...  
Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 86
Author(s):  
Yunok Oh ◽  
Chang-Bum Ahn ◽  
Jae-Young Je

Oxidative stress-induced endothelial dysfunction is strongly linked to the pathogenesis of cardiovascular diseases. A previous study revealed that seahorse hydrolysates ameliorated oxidative stress-mediated human umbilical vein endothelial cells (HUVECs) injury. However, the responsible compounds have not yet been identified. This study aimed to identify cytoprotective peptides and to investigate the molecular mechanism underlying the cytoprotective role in H2O2-induced HUVECs injury. After purification by gel filtration and HPLC, two peptides were sequenced by liquid chromatography-tandem mass spectrometry as HGSH (436.43 Da) and KGPSW (573.65 Da). The synthesized peptides and their combination (1:1 ratio) showed significant HUVECs protection effect at 100 μg/mL against H2O2-induced oxidative damage via significantly reducing intracellular reactive oxygen species (ROS). Two peptides and their combination treatment resulted in the increased heme oxygenase-1 (HO-1), a phase II detoxifying enzyme, through the activation of nuclear transcription factor-erythroid 2-related factor (Nrf2). Additionally, cell cycle and nuclear staining analysis revealed that two peptides and their combination significantly protected H2O2-induced cell death through antiapoptotic action. Two peptides and their combination treatment led to inhibit the expression of proapoptotic Bax, the release of cytochrome C into the cytosol, the activation of caspase 3 by H2O2 treatment in HUVECs, whereas antiapoptotic Bcl-2 expression was increased with concomitant downregulation of Bax/Bcl-2 ratio. Taken together, these results suggest that seahorse-derived peptides may be a promising agent for oxidative stress-related cardiovascular diseases.


2007 ◽  
Vol 41 (9) ◽  
pp. 990-996 ◽  
Author(s):  
Nan Chen ◽  
Wei Shao ◽  
Pingping Lv ◽  
Shuluo Zhang ◽  
Yingying Chen ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Kazushige Ota ◽  
Andrey Brydun ◽  
Ari Itoh-Nakadai ◽  
Jiying Sun ◽  
Kazuhiko Igarashi

Oxidative stress contributes to both aging and tumorigenesis. The transcription factor Bach1, a regulator of oxidative stress response, augments oxidative stress by repressing the expression of heme oxygenase-1 (HO-1) gene (Hmox1) and suppresses oxidative stress-induced cellular senescence by restricting the p53 transcriptional activity. Here we investigated the lifelong effects ofBach1deficiency on mice.Bach1-deficient mice showed longevity similar to wild-type mice. Although HO-1 was upregulated in the cells ofBach1-deficient animals, the levels of ROS inBach1-deficient HSCs were comparable to those in wild-type cells.Bach1−/−;p53−/−mice succumbed to spontaneous cancers as frequently asp53-deficient mice.Bach1deficiency significantly altered transcriptome in the liver of the young mice, which surprisingly became similar to that of wild-type mice during the course of aging. The transcriptome adaptation toBach1deficiency may reflect how oxidative stress response is tuned upon genetic and environmental perturbations. We concluded thatBach1deficiency and accompanying overexpression of HO-1 did not influence aging or p53 deficiency-driven tumorigenesis. Our results suggest that it is useful to target Bach1 for acute injury responses without inducing any apparent deteriorative effect.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3279
Author(s):  
Na Zhu ◽  
Xinran Liu ◽  
Meihong Xu ◽  
Yong Li

Several lines of evidence suggest an inhibitory role of dietary nucleotides (NTs) against oxidative stress and inflammation, which promote senescence in age-associated cardiovascular diseases. We sought to test whether the dietary NTs could retard the hydrogen peroxide (H2O2)-induced senescence of human umbilical vein endothelial cells (HUVECs) and to elucidate the efficiency of different NTs as well as the potential mechanism. Senescence was induced in HUVECs by 4 h exposure to 200 µM H2O2 and was confirmed using senescence-associated-β-galactosidase staining (SA-β-gal), cell viability, and Western blot analyses of p16INK4A and p21Waf1/Cip1 after 24 h administration of growth medium. We find that NTs retards oxidative stress-induced HUVECs senescence, as shown by a lower percentage of SA-β-gal-positive cells, lower expression of p16INK4A, and p21Waf1/Cip1 as well as higher cell viability. GMP100 was the most excellent in delaying HUVECs senescence, which was followed by the NTs mixture, NMN, CMP50, and UMP50/100, while AMP retards HUVECs senescence by specifically reducing p15INK4b expression. NTs all have significant anti-inflammatory effects; AMP and CMP were more prominent in restoring mitochondrial function, GMP and CMP were more competent at eliminating ROS and MDA, while AMP and UMP were more efficient at enhancing antioxidant enzyme activity. The role of the NTs mixture in retarding HUVECs senescence is full-scaled. These results stated that the mechanisms of NTs retarding HUVECs senescence could be related to its antioxidant and anti-inflammation properties promoting cell proliferation and protecting mitochondrial function activities.


Sign in / Sign up

Export Citation Format

Share Document