scholarly journals Water Discharge Management Based on Open and Closed Cylinders in the Gravitation Water Vortex Power Plant

Author(s):  
Muhammad Hasan Basri ◽  
Ainun Nasuki

A Gravitation Water Vortex Power Plant (GWVPP) tool has been made to determine how much water flow is needed to generate electricity. This research was conducted by changing the flow rate and water pressure to determine the effect on the performance of a vortex power plant, and in previous studies, no one has made changes to the discharge and water pressure. The type of basin position used in this study is an open basin position and a closed basin position. Based on the advantages and disadvantages of each type of blade used, a study was carried out using the type of turbine blade model L by changing the water flow rate and water pressure at a predetermined position to determine the effect of water discharge and pressure on the turbine rotational speed. From the results of testing the water discharge measurement in a closed basin which is carried out on the addition of each flow of water discharge at the angle of the faucet 0o to 90o with a volume (V) 98 L and time (t) 1.11 minutes to 2.5 minutes, it can be seen that the average discharge value (Q) the resulting 81.08 l / s. and from the results of testing the water discharge measurement in the open basin which is carried out to the addition of each flow of water discharge at the angle of the faucet 0o to 90o with a volume (V) 98 L and time (t) 1.28 minutes to 4.1 minutes it can be seen that the average discharge value (Q ) resulting in 65.21 l / s.

2019 ◽  
Vol 111 ◽  
pp. 03021
Author(s):  
José Quesada Allerhand ◽  
Ongun Berk Kazanci ◽  
Bjarne W. Olesen

The aim of this study was to determine favorable operation conditions for ceiling panels containing phase change materials (PCM) for cooling applications in office rooms. A recently renovated room in the Technical University of Denmark was used to have realistic boundary conditions. Using TRNSYS 17, the performance of the PCM panels during the cooling season in passive operation, discharge by air, and discharge by water circulation were investigated. A set of simulations were performed during a representative week in the cooling period. The room was simulated with no climatic systems, PCM without active discharge, ventilation during occupied hours only, and PCM with ventilation during occupied hours. Afterwards, two discharge methods were investigated, night ventilation at different flow rates and water circulation in pipes embedded in the panels. A parametric analysis was performed to identify the influence of operation factors in the thermal environment of the room. The parameters studied were the water flow rate, supply water temperature and circulation schedule as well as the conductivity of the PCM. After selecting different operating conditions of the water discharge, simulations were performed from May to October to observe the performance of the selected operation conditions. The results show that the PCM is more effective to provide adequate indoor thermal conditions if it is discharged actively by means of water. The parameters that affect the thermal indoor environment the most are the water circulation schedule, the water supply temperature, and the PCM thermal conductivity. The water flow rate did not have a significant influence. The study shows the importance of selecting an appropriate operation and control strategy for the PCM system. The process used in the study can be potentially used as a procedure for the design of similar climatic systems to determine if active discharge of the PCM is needed and if yes, which discharge method is needed.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1336
Author(s):  
Tatyana Lyubimova ◽  
Yanina Parshakova ◽  
Anatoly Lepikhin ◽  
Yury Lyakhin ◽  
Alexey Tiunov

The hydrological regimes of surface water bodies, as a rule, are unsteady. However, accounting for the non-stationarity substantially complicates the hydrodynamic calculations. Because of this, the scenario approach is traditionally used in the calculations. Characteristic scenarios are set with constant hydrological characteristics throughout the time covered in the calculations. This approach is fully justified if the characteristic time of the change in water flow rate is much longer than the calculation time. However, nowadays, tasks are becoming more and more urgent when accounting for flow variability during calculation period becomes crucial. First of all, such a problem arises when assessing the effect of non-stationary water discharge through hydroelectric power plant dams on the hydrodynamic regime of both the upper and lower pools of the reservoir. In the present paper, the effect of the intraday variability of the Kamskaya Hydroelectric Power Plant (Kamskaya HEPP) operation on the peculiarities of the hydrodynamic regimes of the near-dam part of the upper pool of the Kama reservoir is described. The importance of the problem is determined by the location of the main drinking water intake of Perm city and one of the largest thermal power plants (TPP) in Europe, Permskaya TPP, in this part of the reservoir. This TPP uses a direct-flow cooling system from the Kama reservoir, which is very sensitive to the peculiarities of the hydrodynamic regime of the reservoir. The computational experiments based on the combined hydrodynamic models in 2D/3D formulations have shown that the intraday oscillations of the discharge flow rate through the dam of the HEPP have a very significant effect on the hydrodynamic regime of the reservoir in the vicinity of the Permskaya TPP; therefore, these effects must be taken into account when minimizing the risks of thermal effluents entering the intake channel of the Permskaya TPP.


Author(s):  
Takahiro Moribe ◽  
Hiroto Endo ◽  
Shuichiro Miwa ◽  
Hiroto Sakashita ◽  
Michitsugu Mori

Steam Injector (SI) is a passive pump activated by steam and water, and it does not require any external power supplies or rotating machineries. Moreover, SI has high ability as a heat exchanger by undergoing direct contact condensation mechanism. From these characteristics, SI has a capability to be applied as a passive safety system in the nuclear power plant. In the present study, experiments targeting the operating range and pump performance were carried out to obtain SI’s detailed characteristics under following supply conditions; inlet steam pressure was 0.02 ∼ 0.81MPaG, inlet water flow rate was 0.21 ∼ 0.80 kg/s. In the former experiment, operating range was investigated by changing inlet conditions, and the influence of steam inlet pressure and water inlet flow rates on SI operating range was tested. In the latter experiment, pump performance of SI was evaluated by investigating the maximum discharge pressure in each inlet condition by using back pressure valve. From the results of experiments, it was confirmed the operating range of SI was limited by supplied steam pressure and supplied water flow rate, and some clear trends were found in the operation boundary map. In addition, SI could discharge water at least 1.2 times higher than inlet steam pressure under above-mentioned conditions, which verified SI’s capability to be applied for the nuclear power plant as a core cooling system. And furthermore, existing 1D analysis model’s predictive capability was tested based on these experimental results.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 682
Author(s):  
Eko Surojo ◽  
Aziz Harya Gumilang ◽  
Triyono Triyono ◽  
Aditya Rio Prabowo ◽  
Eko Prasetya Budiana ◽  
...  

Underwater wet welding (UWW) combined with the shielded metal arc welding (SMAW) method has proven to be an effective way of permanently joining metals that can be performed in water. This research was conducted to determine the effect of water flow rate on the physical and mechanical properties (tensile, hardness, toughness, and bending effect) of underwater welded bead on A36 steel plate. The control variables used were a welding speed of 4 mm/s, a current of 120 A, electrode E7018 with a diameter of 4 mm, and freshwater. The results show that variations in water flow affected defects, microstructure, and mechanical properties of underwater welds. These defects include spatter, porosity, and undercut, which occur in all underwater welding results. The presence of flow and an increased flow rate causes differences in the microstructure, increased porosity on the weld metal, and undercut on the UWW specimen. An increase in water flow rate causes the acicular ferrite microstructure to appear greater, and the heat-affected zone (HAZ) will form finer grains. The best mechanical properties are achieved by welding with the highest flow rate, with a tensile strength of 534.1 MPa, 3.6% elongation, a Vickers microhardness in the HAZ area of 424 HV, and an impact strength of 1.47 J/mm2.


Author(s):  
Afshin Goharzadeh ◽  
Keegan Fernandes

This paper presents an experimental investigation on a modified airlift pump. Experiments were undertaken as a function of air-water flow rate for two submergence ratios (ε=0.58 and 0.74), and two different riser geometries (i) straight pipe with a constant inner diameter of 19 mm and (ii) enlarged pipe with a sudden expanded diameter of 19 to 32 mm. These transparent vertical pipes, of 1 m length, were submerged in a transparent rectangular tank (0.45×0.45×1.1 m3). The compressed air was injected into the vertical pipe to lift the water from the reservoir. The flow map regime is established for both configurations and compared with previous studies. The two phase air-water flow structure at the expansion region is experimentally characterized. Pipeline geometry is found to have a significant influence on the output water flow rate. Using high speed photography and electrical conductivity probes, new flow regimes, such as “slug to churn” and “annular to churn” flow, are observed and their influence on the output water flow rate and efficiency are discussed. These experimental results provide fundamental insights into the physics of modified airlift pump.


Energies ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 112 ◽  
Author(s):  
Yonghong Guo ◽  
Huimin Wei ◽  
Xiaoru Yang ◽  
Weijia Wang ◽  
Xiaoze Du ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document