scholarly journals SOIL MYCOFLORA OF BLACK PEPPER RHIZOSPHERE IN THE PHILIPPINES AND THEIR IN VITRO ANTAGONISM AGAINST Phytophthora capsici L.

2016 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Rita Noveriza ◽  
Tricita H. Quimio

Foot rot disease of black pepper caused by Phytophthora capsici had been reported in Batangas and Laguna, Philippines. The plant was recovered following the application of crop residue (organic substrate) and intercropping with other crops. This study was aimed to isolate, identify, and determine the soil mycoflora from the rhizosphere of black pepper grown on various cropping patterns in Batangas and Laguna. Antagonistic activity of mycoflora isolates was tested against P. capsici using dual culture technique. The result showed that 149 colonies of soil mycoflora isolated were belonging to 14 genera; three of them, i.e. Penicillium, Paecilomyces and Aspergillus, were the most dominant. All of the mycoflora isolates were able to inhibit the growth of the pathogen. Eighteen of them were the most promising antagonists, based on their inhibition growth of more than 60%. It is suggested that antagonistic mechanism of Mucor isolate (1001), Trichoderma (125, 170, 171, 179, 180, 181), Gliocladium (109), Cunninghamella (165, 168), Mortierella (177), and Aspergillus (106) was space competitor (competition for nutrient) since they rapidly overgrew the pathogen. Aspergillus (67, 79, 81, 83, 108, and 202) isolates inhibited the pathogen apparently by producing antibiotic, whereas Trichoderma (125, 170, 171, 179, 180, and 181) isolates were able to penetrate the hyphae of the pathogen. The organic matter percentage in the soil was significantly correlated with the number of antagonistic mycoflora in rhizosphere (R2 = 0.1094), but the cropping pattern was negatively correlated. This study suggests that organic matter increased antagonistic mycoflora in black pepper rhizosphere, which will reduce severity of the disease.

2016 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Rita Noveriza ◽  
Tricita H. Quimio

Foot rot disease of black pepper caused by Phytophthora capsici had been reported in Batangas and Laguna, Philippines. The plant was recovered following the application of crop residue (organic substrate) and intercropping with other crops. This study was aimed to isolate, identify, and determine the soil mycoflora from the rhizosphere of black pepper grown on various cropping patterns in Batangas and Laguna. Antagonistic activity of mycoflora isolates was tested against P. capsici using dual culture technique. The result showed that 149 colonies of soil mycoflora isolated were belonging to 14 genera; three of them, i.e. Penicillium, Paecilomyces and Aspergillus, were the most dominant. All of the mycoflora isolates were able to inhibit the growth of the pathogen. Eighteen of them were the most promising antagonists, based on their inhibition growth of more than 60%. It is suggested that antagonistic mechanism of Mucor isolate (1001), Trichoderma (125, 170, 171, 179, 180, 181), Gliocladium (109), Cunninghamella (165, 168), Mortierella (177), and Aspergillus (106) was space competitor (competition for nutrient) since they rapidly overgrew the pathogen. Aspergillus (67, 79, 81, 83, 108, and 202) isolates inhibited the pathogen apparently by producing antibiotic, whereas Trichoderma (125, 170, 171, 179, 180, and 181) isolates were able to penetrate the hyphae of the pathogen. The organic matter percentage in the soil was significantly correlated with the number of antagonistic mycoflora in rhizosphere (R2 = 0.1094), but the cropping pattern was negatively correlated. This study suggests that organic matter increased antagonistic mycoflora in black pepper rhizosphere, which will reduce severity of the disease.


2016 ◽  
Vol 4 (2) ◽  
pp. 40 ◽  
Author(s):  
Tresnawati Purwadari ◽  
Pius P. Ketaren ◽  
Arnold P. Sinurat ◽  
Irawan Sutikno

Foot rot disease of black pepper caused by Phytophthora capsici had been reported in Batangas and Laguna, Philippines. The plant was recovered following the application of crop residue (organic substrate) and intercropping with other crops. This study was aimed to isolate, identify, and determine the soil mycoflora from the rhizosphere of black pepper grown on various cropping patterns in Batangas and Laguna. Antagonistic activity of mycoflora isolates was tested against P. capsici using dual culture technique. The result showed that 149 colonies of soil mycoflora isolated were belonging to 14 genera; three of them, i.e. Penicillium, Paecilomyces and Aspergillus, were the most dominant. All of the mycoflora isolates were able to inhibit the growth of the pathogen. Eighteen of them were the most promising antagonists, based on their inhibition growth of more than 60%. It is suggested that antagonistic mechanism of Mucor isolate (1001), Trichoderma (125, 170, 171, 179, 180, 181), Gliocladium (109), Cunninghamella (165, 168), Mortierella (177), and Aspergillus (106) was space competitor (competition for nutrient) since they rapidly overgrew the pathogen. Aspergillus (67, 79, 81, 83, 108, and 202) isolates inhibited the pathogen apparently by producing antibiotic, whereas Trichoderma (125, 170, 171, 179, 180, and 181) isolates were able to penetrate the hyphae of the pathogen. The organic matter percentage in the soil was significantly correlated with the number of antagonistic mycoflora in rhizosphere (R2 = 0.1094), but the cropping pattern wPoultry are not able to digest fiber in the diet. Hydrolytic enzymes including cellulases and hemicellulases have been used as poultry feed supplement. Termites (Glyptotermes montanus) have the ability to digest wood that contains high fiber. The purpose of this experiment was to identify the cellulase and hemicellulase of termite extract. The hydrolytic (saccharification) activity of the termite extract on feedstuffs was then evaluated. It contained high endo-β-D-1,4-glucanase (CMCase) activity, but the activities of avicelase, β-D-1,4-mannanase, β- D-1,4-xylanase, and β-D-1,4-glucosidase were very low. The activities of the enzymes were higher in the fresh extract than those extracted after drying at 40oC with blower oven. CMCase (as cellulase), β-D-1,4-mannanase (as hemicellulase), and β-D- 1,4-glucosidase (as glycosidase) were reevaluated further to determine the optimum pH and temperatures for maximum activities. The optimum pH for CMCase, β-D-1,4-mannanase, and β-D-1,4-glucosidase were 6.2, 5.0, and 5.8 respectively, while the optimum temperatures were 45-50oC, 50-55oC, and 42-45oC, respectively. The enzyme mixture or cocktail was more appropriate in digesting feedstuffs with high lignocellulose (fiber) such as rice bran and pollard than feedstuffs with more soluble starch such as soybean and corn meals. The extracted enzyme could be immobilized with pollard, but CMCase recovery was low (28.6%), while β-D-1,4-mannanase and β-D-1,4-glucosidase recoveries were 89.2% and 272.9%, respectively. Termite extract contained enzyme cocktails of lignocellulases that potentially be used as feed supplement. However, its use is limited by its low activity.as negatively correlated. This study suggests that organic matter increased antagonistic mycoflora in black pepper rhizosphere, which will reduce severity of the disease.


2016 ◽  
Vol 4 (2) ◽  
pp. 40 ◽  
Author(s):  
Tresnawati Purwadari ◽  
Pius P. Ketaren ◽  
Arnold P. Sinurat ◽  
Irawan Sutikno

Foot rot disease of black pepper caused by Phytophthora capsici had been reported in Batangas and Laguna, Philippines. The plant was recovered following the application of crop residue (organic substrate) and intercropping with other crops. This study was aimed to isolate, identify, and determine the soil mycoflora from the rhizosphere of black pepper grown on various cropping patterns in Batangas and Laguna. Antagonistic activity of mycoflora isolates was tested against P. capsici using dual culture technique. The result showed that 149 colonies of soil mycoflora isolated were belonging to 14 genera; three of them, i.e. Penicillium, Paecilomyces and Aspergillus, were the most dominant. All of the mycoflora isolates were able to inhibit the growth of the pathogen. Eighteen of them were the most promising antagonists, based on their inhibition growth of more than 60%. It is suggested that antagonistic mechanism of Mucor isolate (1001), Trichoderma (125, 170, 171, 179, 180, 181), Gliocladium (109), Cunninghamella (165, 168), Mortierella (177), and Aspergillus (106) was space competitor (competition for nutrient) since they rapidly overgrew the pathogen. Aspergillus (67, 79, 81, 83, 108, and 202) isolates inhibited the pathogen apparently by producing antibiotic, whereas Trichoderma (125, 170, 171, 179, 180, and 181) isolates were able to penetrate the hyphae of the pathogen. The organic matter percentage in the soil was significantly correlated with the number of antagonistic mycoflora in rhizosphere (R2 = 0.1094), but the cropping pattern wPoultry are not able to digest fiber in the diet. Hydrolytic enzymes including cellulases and hemicellulases have been used as poultry feed supplement. Termites (Glyptotermes montanus) have the ability to digest wood that contains high fiber. The purpose of this experiment was to identify the cellulase and hemicellulase of termite extract. The hydrolytic (saccharification) activity of the termite extract on feedstuffs was then evaluated. It contained high endo-β-D-1,4-glucanase (CMCase) activity, but the activities of avicelase, β-D-1,4-mannanase, β- D-1,4-xylanase, and β-D-1,4-glucosidase were very low. The activities of the enzymes were higher in the fresh extract than those extracted after drying at 40oC with blower oven. CMCase (as cellulase), β-D-1,4-mannanase (as hemicellulase), and β-D- 1,4-glucosidase (as glycosidase) were reevaluated further to determine the optimum pH and temperatures for maximum activities. The optimum pH for CMCase, β-D-1,4-mannanase, and β-D-1,4-glucosidase were 6.2, 5.0, and 5.8 respectively, while the optimum temperatures were 45-50oC, 50-55oC, and 42-45oC, respectively. The enzyme mixture or cocktail was more appropriate in digesting feedstuffs with high lignocellulose (fiber) such as rice bran and pollard than feedstuffs with more soluble starch such as soybean and corn meals. The extracted enzyme could be immobilized with pollard, but CMCase recovery was low (28.6%), while β-D-1,4-mannanase and β-D-1,4-glucosidase recoveries were 89.2% and 272.9%, respectively. Termite extract contained enzyme cocktails of lignocellulases that potentially be used as feed supplement. However, its use is limited by its low activity.as negatively correlated. This study suggests that organic matter increased antagonistic mycoflora in black pepper rhizosphere, which will reduce severity of the disease.


2007 ◽  
Vol 53 (2) ◽  
pp. 207-212 ◽  
Author(s):  
Naveen Kumar Arora ◽  
Min Jeong Kim ◽  
Sun Chul Kang ◽  
Dinesh Kumar Maheshwari

A study was conducted to investigate the possibility of involvement of chitinase and β-1,3-glucanase of an antagonistic fluorescent Pseudomonas in growth suppression of phytopathogenic fungi, Phytophthora capsici and Rhizoctonia solani . Fluorescent Pseudomonas isolates GRC3 and GRC4 were screened for their antifungal potential against phytopathogenic fungi by using dual culture technique both on solid and liquid media. The percent inhibition was calculated. Various parameters were monitored for optimization of enzyme activities by fluorescent Pseudomonas GRC3. The involvement of chitinases, β-1,3-glucanases, and antifungal metabolites of nonenzymatic nature was correlated with the inhibition of P. capsici and R. solani. The results provide evidence for antibiosis as a mechanism for antagonism. The study also confirms that multiple mechanisms are involved in suppressing phytopathogens as evidenced by the involvement of chitinase and β-1,3-glucanase in inhibition of R. solani but not P. capsici by isolate GRC3.


2011 ◽  
Vol 11 (2) ◽  
pp. 147-156
Author(s):  
Cipta Ginting ◽  
Tri Maryono

The objective of this research was to determine the influence of the kinds of organic matter on the efficacy of Trichoderma harzianum Rifai to control foot rot of black pepper caused by Phytophthora capsici Leonian.  Trichoderma spp. were isolated from suppressive and non-suppressive soils taken from black pepper fields with high disease incidence.  Screening of Trichoderma spp. isolates was conducted through antagonistic test with dual culture technique.  Treatments were arranged in a completely randomized design with six replications.  Treatments were rice husk, rice straw, wood dust, Arachis pintoi, mixture of the four organic matters, the mixture without T. harzianum, and without organic matter.  The test was conducted in greenhouse with media consisted of soil, organic matter, and sand (2 : 2 : 1, v/v).  After being otoclaved, the medium was infested with T. harzianum and P. capsici each with five mycelium plugs of 1-cm diameter.  Black pepper seedlings were planted 5 days after fungal infestation.  After planting the seedlings, five leaf cuts were partly inserted into the soil on each pot.  The variables observed were disease incidence on the leaf cuts inserted into the soil and disease severity on the stems and roots.  The results show that all 16 Trichoderma isolates inhibited P. capsici colonies and some isolates showed stronger inhibition than the others.  T. harzianum reduced disease severity, but there was no effect of the kinds of organic matter on the ability of T. harzianum to control foot rot.


Author(s):  
Ma. Ángeles Valencia de Ita ◽  
Jiménez Huerta Fátima ◽  
Conrado Parraguirre Lezama ◽  
Alfredo Báez Simón ◽  
Gerardo Landeta Cortés ◽  
...  

Diversity of the different types of chilies in Mexico has been scarcely studied, and a large variety have been found to be, such as Manzano chili. Root rot caused by oomycete Phytophthora capsici is a severe disease that affects Manzano chili production in Mexico, detracted from its production and quality. The use of biological control agents such as Trichodermanative’s species, represents an efficient alternative to reduce losses and control the disease. For this reason, the objective of the present investigation was to evaluate the antagonistic effect in vitro and in vivo of four native strains of Trichoderma spp., on Phytophthora capsici in seedlings of Manzano chili from Puebla-Mexico was evaluated. Dual culture technique was used to determine the percentage of inhibition of radial growth (PICR) of the PC-A strain of P. capsici. Analysis of the percentage of germination was also carried out, as well as the incidence of root rot at 20 days after inoculation with the pathogen (dai) in the nursery. T. harzianum strain presented the highest PICR (42.86%) of antagonistic level in vitro and class I in the Bell scale, in addition, it obtained 88% germination in the nursery and 10% mortality at 20 dai, higher than the other native strains of Trichoderma. The bio-controlling effect of strains of Trichoderma spp., offers an effective alternative for root necrosis caused by P. capsici in the cultivation of Manzano chili in Puebla-Mexico.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
E. K. Wanjiku ◽  
J. W. Waceke ◽  
J. N. Mbaka

Demand for organic avocado fruits, together with stringent food safety standards in the global market, has made producers to use alternative, safe, and consumer-friendly strategies of controlling the postharvest fungal disease of avocado fruits. This study assessed the in vitro efficacy of Trichoderma spp. (T. atroviride, T. virens, T. asperellum, and T. harzianum) against isolated avocado stem-end rot (SER) fungal pathogens (Lasiodiplodia theobromae, Neofusicoccum parvum, Nectria pseudotrichia, and Fusarium solani) using a dual culture technique. The Trichoderma spp. were also evaluated singly on postharvest “Hass” avocado fruits. Spore suspension at 5 × 104 conidial/ml of the Trichoderma spp. was applied on the avocado fruits at three time points, twenty-four hours before the fungal pathogen (preinoculation), at the same time as the fungal pathogen (concurrent inoculation), and 24 hours after the fungal pathogen (postinoculation). In the in vitro study, T. atroviride showed the highest mycelial growth inhibition against N. parvum (48%), N. pseudotrichia (55%), and F. solani (32.95%), while T. harzianum had the highest mycelial growth inhibition against L. theobromae. Trichoderma asperellum was the least effective in inhibiting the mycelial growth of all the pathogens. Similarly, T. virens showed the highest mycelial growth inhibition against N. pseudotrichia at 45% inhibition. On postharvest “Hass” fruits, T. atroviride showed the highest efficacy against N. parvum, N. pseudotrichia, and F. solani in all the applications. Trichoderma virens and T. harzianum were most effective against all the pathogens during postinoculation, while Lasiodiplodia theobromae was best controlled by T. virens, T. harzianum, and T. asperellum during postinoculation. Both T. atroviride and T. harzianum present a potential alternative to synthetic fungicides against postharvest diseases of avocado fruits, and further tests under field conditions to be done to validate their efficacy. The possibility of using Trichoderma spp. in the management of SER on avocado fruits at a commercial level should also be explored.


2021 ◽  
Vol 12 (5) ◽  
pp. 339-347
Author(s):  
S. Ameer Basha ◽  
◽  
V. Ramya ◽  
A. Sajeli Begum ◽  
G. Raghavendra ◽  
...  

A study was made to evaluate the efficacy of Pseudomonas fluorescens strains, fungicides and non-conventional chemicals against Botryotinia ricini, causing grey mold disease in castor, under in vitro conditions. Among the 40 strains isolated from rhizosphere soil samples of different crops across the State of Telangana, India, only eight strains inhibited the growth of B. ricini under dual culture technique, of which strains Pf 21 (90.56%), Pf 23 (88.89%), Pf 34 (86.11%) and Pf 36 (84.17%) were the most effective. Among the seven chemicals (four fungicides and three non-conventional chemicals) tested for their efficacy, carbendazim followed by propiconazole had significant antagonistic effect against B. ricini. Exposure of healthy castor capsules to B. ricini and P. fluorescens for different time periods revealed that strains Pf 34 and Pf 36 were effective in completely inhibiting the growth of B. ricini and hence these two strains have been identified as effective biocontrol agents, on par with carbendazim, which offer scope for sustainable and integrated disease management of grey mold disease in castor.


Author(s):  
Akhilesh Kumar Kulmitra ◽  
Neha Sahu ◽  
V.B. Sanath Kumar ◽  
Thejesha A. G. ◽  
Amlan Ghosh ◽  
...  

The five different bio-agents viz., Trichoderma viride, T. harzianum, T. virens, Pseudomonas fluorescens and Bacillus subtilis were evaluated against Pyricularia oryzae at four and eight days after incubation through dual culture technique. Among the five different bio-agents, highest per cent inhibition of mycelial growth of fungus was recorded in T. virens i.e. 67 per cent and 70 percent after four and eight days after incubation respectively with mean of 68.5 per cent followed by Trichoderma viride with the inhibition of 61 and 63 per cent respectively with mean of 62 per cent. The Pseudomonas fluorescens did not show any inhibition of mycelial growth of P. oryzae as the pathogen over grew the bio-agents.


2021 ◽  
Vol 21 (no 1) ◽  
Author(s):  
K. Vignesh ◽  
K. Rajamohan ◽  
P. Balabaskar ◽  
R. Anandan

Tomato (Solanum lycopersicum L.) is one of the most important, commercial and widely grown vegetable crop in the world. Tomato plays a critical role in nutritional food requirements, income and employment opportunities for the people. However, its production is threatened by the Fusarium wilt caused by Fusarium oxysporum f.sp. lycopersici and production losses between 30%to40%. In the present investigation an attempt has been made to study the in vitro efficacy of Pseudomonas fluorescens against Fusarium oxysporum f.sp. lycopersici. The antagonistic effect of Pseudomonas fluorescens were observed by the Dual culture technique and Agarwell method under the in vitro conditions.Among the ten isolates of Pseudomonas fluorescens, isolate Pf5 found to show the maximum percent inhibition over control (58.75%) and least mycelial growth (37.12mm) in dual culture technique against Fusarium oxysporum f.sp. lycopersici. In Agar well method isolate Pf5 proved out the maximum inhibition zone (17.47mm)against Fusarium oxysporumf.sp. lycopersici and percent inhibition over control (80.97%) at 30% concentration level.


Sign in / Sign up

Export Citation Format

Share Document