FIRST EVIDENCE OF SEED PREDATION BY ARTHROPODS FROM GONDWANA AND ITS EARLY PALEOZOIC HISTORY (RIO BONITO FORMATION, PARANÁ BASIN, BRAZIL)

Palaios ◽  
2020 ◽  
Vol 35 (7) ◽  
pp. 292-301
Author(s):  
THAMIRIS BARBOSA DOS SANTOS ◽  
ESTHER REGINA DE SOUZA PINHEIRO ◽  
ROBERTO IANNUZZI

ABSTRACT Seeds are plant organs commonly found worldwide in late Paleozoic deposits. In Gondwana, the seeds are found in deposits from Southern Africa, Antarctica, Oceania, and South America, and are widely reported in the well-known “Glossopteris Flora”. Even with a significant record of these plant organs, little is known about plant-insect interactions with seeds during the Pennsylvanian and Permian periods. In the present paper, we recorded the first formal record of seed consumption by arthropods in Cordaicarpus and Samaropsis-like seeds for Gondwana from lower Permian (Artinskian) deposits in Southern Brazil. The material analyzed was collected from the Itanema II outcrop of Santa Catarina State and consisted of 34 seed specimens. Of these, eight specimens presented evidence for plant-insect interaction, representing 23.5% of all specimens that were attacked by seed predators. The consumption was inflicted by insects with stylate mouthparts, probably belonging to hemipteroid or paleodictyopteroid lineages. The damage is described as perforations and scale-insect marks along the seed body. We recorded one damage type as DT74 and three others as new damage types DT399, DT400, and DT401, some of which are specific to a few seed morphotypes, including one morphotype with subtending cupule still attached to the seed. The elevated frequency of seed predation indicates that seed consumption by insects was well established during the early Permian.

2002 ◽  
Vol 14 (2) ◽  
pp. 71-81 ◽  
Author(s):  
Marcia O. Mello ◽  
Marcio C. Silva-Filho

In this review, plant-insect interaction is discussed as a dynamic system, subjected to continual variation and change. Plants developed different mechanisms to reduce insect attack, including specific responses that activate different metabolic pathways which considerably alter their chemical and physical aspects. On the other hand, insects developed several strategies to overcome plant defense barriers, allowing them to feed, grow and reproduce on their host plants. This review foccuses on several aspects of this complex interaction between plants and insects, including chemical-derived substances, protein-derived molecules and volatile compounds of plants whereas metabolization, sequestration or avoidance are in turn employed by the insects.


Paleobiology ◽  
2015 ◽  
Vol 41 (1) ◽  
pp. 174-186 ◽  
Author(s):  
Tao Su ◽  
Jonathan M. Adams ◽  
Torsten Wappler ◽  
Yong-Jiang Huang ◽  
Frédéric M. B. Jacques ◽  
...  

AbstractPlant-insect interactions are vital for structuring terrestrial ecosystems. It is still unclear how climate change in geological time might have shaped plant-insect interactions leading to modern ecosystems. We investigated the effect of Quaternary climate change on plant-insect interactions by observing insect herbivory on leaves of an evergreen sclerophyllous oak lineage (QuercussectionHeterobalanus, HET) from a late Pliocene flora and eight living forests in southwestern China. Among the modern HET populations investigated, the damage diversity tends to be higher in warmer and wetter climates. Even though the climate of the fossil flora was warmer and wetter than modern sample sites, the damage diversity is lower in the fossil flora than in modern HET populations. Eleven out of 18 damage types in modern HET populations are observed in the fossil flora. All damage types in the fossil flora, except for one distinctive gall type, are found in modern HET populations. These results indicate that Quaternary climate change did not cause extensive extinction of insect herbivores in HET forests. The accumulation of a more diverse herbivore fauna over time supports the view of plant species as evolutionary “islands” for colonization and turnover of insect species.


2019 ◽  
Author(s):  
E.K. Meineke ◽  
C. Tomasi ◽  
S. Yuan ◽  
K.M. Pryer

AbstractPremise of the studyDespite the economic importance of insect damage to plants, long-term data documenting changes in insect damage (‘herbivory’) and diversity are limited. Millions of pressed plant specimens are now available online for collecting big data on plant-insect interactions during the Anthropocene.MethodsWe initiated development of machine learning methods to automate extraction of herbivory data from herbarium specimens. We trained an insect damage detector and a damage type classifier on two distantly related plant species. We experimented with 1) classifying six types of herbivory and two control categories of undamaged leaf, and 2) detecting two of these damage categories for which several hundred annotations were available.ResultsClassification models identified the correct type of herbivory 81.5% of the time. The damage classifier was accurate for categories with at least one hundred test samples. We show anecdotally that the detector works well when asked to detect two types of damage.DiscussionThe classifier and detector together are a promising first step for the automation of herbivory data collection. We describe ongoing efforts to increase the accuracy of these models to allow other researchers to extract similar data and apply them to address a variety of biological hypotheses.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3118 ◽  
Author(s):  
Marília Elias Gallon ◽  
Eduardo Afonso Silva-Junior ◽  
Juliano Geraldo Amaral ◽  
Norberto Peporine Lopes ◽  
Leonardo Gobbo-Neto

The chemical ecology of plant-insect interactions has been driving our understanding of ecosystem evolution into a more comprehensive context. Chlosyne lacinia (Lepidoptera: Nymphalidae) is an olygophagous insect herbivore, which mainly uses host plants of Heliantheae tribe (Asteraceae). Herein, plant-insect interaction between Tithonia diversifolia (Heliantheae) and Chlosyne lacinia was investigated by means of untargeted LC-MS/MS based metabolomics and molecular networking, which aims to explore its inherent chemical diversity. C. lacinia larvae that were fed with T. diversifolia leaves developed until fifth instar and completed metamorphosis to the adult phase. Sesquiterpene lactones (STL), flavonoids, and lipid derivatives were putatively annotated in T. diversifolia (leaves and non-consumed abaxial surface) and C. lacinia (feces, larvae, pupae, butterflies, and eggs) samples. We found that several furanoheliangolide-type STL that were detected in T. diversifolia were ingested and excreted in their intact form by C. lacinia larvae. Hence, C. lacinia caterpillars may have, over the years, developed tolerance mechanisms for STL throughout effective barriers in their digestive canal. Flavonoid aglycones were mainly found in T. diversifolia samples, while their glycosides were mostly detected in C. lacinia feces, which indicated that the main mechanism for excreting the consumed flavonoids was through their glycosylation. Moreover, lysophospholipids were predominately found in C. lacinia samples, which suggested that they were essential metabolites during pupal and adult stages. These findings provide insights into the natural products diversity of this plant-insect interaction and contribute to uncovering its ecological roles.


2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 134
Author(s):  
Marília Elias Gallon ◽  
Leonardo Gobbo-Neto

Balanced nutritional intake is essential to ensure that insects undergo adequate larval development and metamorphosis. Integrative multidisciplinary approaches have contributed valuable insights regarding the ecological and evolutionary outcomes of plant–insect interactions. To address the plant metabolites involved in the larval development of a specialist insect, we investigated the development of Chlosyne lacinia caterpillars fed on Heliantheae species (Tithonia diversifolia, Tridax procumbens and Aldama robusta) leaves and determined the chemical profile of plants and insects using a metabolomic approach. By means of LC-MS and GC-MS combined analyses, 51 metabolites were putatively identified in Heliantheae species and C. lacinia caterpillars and frass; these metabolites included flavonoids, sesquiterpene lactones, monoterpenoids, sesquiterpenoids, diterpenes, triterpenes, oxygenated terpene derivatives, steroids and lipid derivatives. The leading discriminant metabolites were diterpenes, which were detected only in A. robusta leaves and insects that were fed on this plant-based diet. Additionally, caterpillars fed on A. robusta leaves took longer to complete their development to the adult phase and exhibited a greater diapause rate. Hence, we hypothesized that diterpenes may be involved in the differential larval development. Our findings shed light on the plant metabolites that play roles in insect development and metabolism, opening new research avenues for integrative studies of insect nutritional ecology.


Sign in / Sign up

Export Citation Format

Share Document