The Groningen Gas Field: Fifty Years of Exploration and Gas Production from a Permian Dryland Reservoir

Author(s):  
JÜRGEN GRÖTSCH ◽  
ARNOUD SLUIJK ◽  
KEES Van OJIK ◽  
MARTIN De KEIJZER ◽  
JORIS GRAAF ◽  
...  
Author(s):  
Pauline P. Kruiver ◽  
Manos Pefkos ◽  
Erik Meijles ◽  
Gerard Aalbersberg ◽  
Xander Campman ◽  
...  

AbstractIn order to inform decision-making regarding measures to mitigate the impact of induced seismicity in the Groningen gas field in the Netherlands, a comprehensive seismic risk model has been developed. Starting with gas production scenarios and the consequent reservoir compaction, the model generates synthetic earthquake catalogues which are deployed in Monte Carlo analyses, predicting ground motions at a buried reference rock horizon that are combined with nonlinear amplification factors to estimate response spectral accelerations at the surface. These motions are combined with fragility functions defined for the exposed buildings throughout the region to estimate damage levels, which in turn are transformed to risk in terms of injury through consequence functions. Several older and potentially vulnerable buildings are located on dwelling mounds that were constructed from soils and organic material as a flood defence. These anthropogenic structures are not included in the soil profile models used to develop the amplification factors and hence their influence has not been included in the risk analyses to date. To address this gap in the model, concerted studies have been identified to characterize the dwelling mounds. These include new shear-wave velocity measurements that have enabled dynamic site response analyses to determine the modification of ground shaking due to the presence of the mound. A scheme has then been developed to incorporate the dwelling mounds into the risk calculations, which included an assessment of whether the soil-structure interaction effects for buildings founded on the mounds required modification of the seismic fragility functions.


2017 ◽  
Vol 96 (5) ◽  
pp. s55-s69 ◽  
Author(s):  
Christopher J. Spiers ◽  
Suzanne J.T. Hangx ◽  
André R. Niemeijer

AbstractThis paper describes a research programme recently initiated at Utrecht University that aims to contribute new, fundamental physical understanding and quantitative descriptions of rock and fault behaviour needed to advance understanding of reservoir compaction and fault behaviour in the context of induced seismicity and subsidence in the Groningen gas field. The NAM-funded programme involves experimental rock and fault mechanics work, microscale observational studies to determine the processes that control reservoir rock deformation and fault slip, modelling and experimental work aimed at establishing upscaling rules between laboratory and field scales, and geomechanical modelling of fault rupture and earthquake generation at the reservoir scale. Here, we focus on describing the programme and its intended contribution to understanding the response of the Groningen field to gas production. The key knowledge gaps that drive the programme are discussed and the approaches employed to address them are highlighted. Some of the first results emerging from the work in progress are also reported briefly and are providing important new insights.


2020 ◽  
Author(s):  
Stephen Bourne ◽  
Steve Oates

<p>Geological faults may fail and produce earthquakes due to external stresses induced by hydrocarbon recovery, geothermal extraction, CO<sub>2</sub> storage or subsurface energy storage. The associated hazard and risk critically depend on the spatiotemporal and size distribution of any induced seismicity. The observed statistics of induced seismicity within the Groningen gas field evolve as non-linear functions of the poroelastic stresses generated by pore pressure depletion since 1965. The rate of earthquake initiation per unit stress has systematically increased as an exponential-like function of cumulative incremental stress over at least the last 25 years of gas production. The expected size of these earthquakes also increased in a manner consistent with a stress-dependent tapering of the seismic moment power-law distribution. Aftershocks of these induced earthquakes are also observed, although evidence for any stress-dependent aftershock productivity or spatiotemporal clustering is inconclusive.</p><p>These observations are consistent with the reactivation of a mechanically disordered fault system characterized by a large, stochastic prestress distribution. If this prestress variability significantly exceeds the induced stress loads, as well as the earthquake stress drops, then the space-time-size distribution of induced earthquakes may be described by mean field theories within statistical fracture mechanics. A probabilistic seismological model based on these theories matches the history of induced seismicity within the Groningen region and correctly forecasts the seismicity response to reduced gas production rates designed to lower the associated seismic hazard and risk.</p>


2017 ◽  
Vol 96 (5) ◽  
pp. s117-s129 ◽  
Author(s):  
Rob M.H.E. van Eijs ◽  
Onno van der Wal

AbstractNot long after discovery of the Groningen field, gas-production-induced compaction and consequent land subsidence was recognised to be a potential threat to groundwater management in the province of Groningen, in addition to the fact that parts of the province lie below sea level. More recently, NAM's seismological model also pointed to a correlation between reservoir compaction and the observed induced seismicity above the field. In addition to the already existing requirement for accurate subsidence predictions, this demanded a more accurate description of the expected spatial and temporal development of compaction.Since the start of production in 1963, multiple levelling campaigns have gathered a unique set of deformation measurements used to calibrate geomechanical models. In this paper we present a methodology to model compaction and subsidence, combining results from rock mechanics experiments and surface deformation measurements. Besides the optical spirit-levelling data, InSAR data are also used for inversion to compaction and calibration of compaction models. Residual analysis, i.e. analysis of the difference between measurement and model output, provides confidence in the model results used for subsidence forecasting and as input to seismological models.


2017 ◽  
Vol 96 (5) ◽  
pp. s175-s182 ◽  
Author(s):  
Stephen J. Bourne ◽  
Stephen J. Oates

AbstractThis paper reviews the evolution of a sequence of seismological models developed and implemented as part of a workflow for Probabilistic Seismic Hazard and Risk Assessment of the seismicity induced by gas production from the Groningen gas field. These are semi-empirical statistical geomechanical models derived from observations of production-induced seismicity, reservoir compaction and structure of the field itself. Initial versions of the seismological model were based on a characterisation of the seismicity in terms of its moment budget. Subsequent versions of the model were formulated in terms of seismic event rates, this change being driven in part by the reduction in variability of the model forecasts in this domain. Our approach makes use of the Epidemic Type After Shock model (ETAS) to characterise spatial and temporal clustering of earthquakes and has been extended to also incorporate the concentration of moment release on pre-existing faults and other reservoir topographic structures.


2021 ◽  
pp. 1-18
Author(s):  
Yunzhao Zhang ◽  
Lianbo Zeng ◽  
Wenya Lyu ◽  
Dongsheng Sun ◽  
Shuangquan Chen ◽  
...  

Abstract The Upper Triassic Xujiahe Formation is a typical tight gas reservoir in which natural fractures determine the migration, accumulation and production capacity of tight gas. In this study, we focused on the influences of natural fractures on the tight gas migration and production. We clarified characteristics and attributes (i.e. dips, apertures, filling degree and cross-cutting relationships) of the fractures based on image logging interpretations and core descriptions. Previous studies of electron spin resonance, carbon and oxygen isotopes, homogenization temperature of fluid inclusions analysis and basin simulation were considered. This study also analysed the fracture sequences, source of fracture fillings, diagenetic sequences and tight gas enrichment stages. We obtained insight into the relationship between fracture evolution and hydrocarbon charging, particularly the effect of the apertures and intensity of natural fractures on tight gas production. We reveal that the bedding fractures are short horizontal migration channels of tight gas. The tectonic fractures with middle, high and nearly vertical angles are beneficial to tight gas vertical migration. The apertures of fractures are controlled by the direction of maximum principal stress and fracture angle. The initial gas production of the vertical wells presents a positive correlation with the fracture abundance, and the intensity and aperture of fractures are the fundamental factors that determine the tight gas production. With these findings, this study is expected to guide the future exploration and development of tight gas with similar geological backgrounds.


2017 ◽  
Vol 33 (2) ◽  
pp. 481-498 ◽  
Author(s):  
Julian J. Bommer ◽  
Peter J. Stafford ◽  
Benjamin Edwards ◽  
Bernard Dost ◽  
Ewoud van Dedem ◽  
...  

The potential for building damage and personal injury due to induced earthquakes in the Groningen gas field is being modeled in order to inform risk management decisions. To facilitate the quantitative estimation of the induced seismic hazard and risk, a ground motion prediction model has been developed for response spectral accelerations and duration due to these earthquakes that originate within the reservoir at 3 km depth. The model is consistent with the motions recorded from small-magnitude events and captures the epistemic uncertainty associated with extrapolation to larger magnitudes. In order to reflect the conditions in the field, the model first predicts accelerations at a rock horizon some 800 m below the surface and then convolves these motions with frequency-dependent nonlinear amplification factors assigned to zones across the study area. The variability of the ground motions is modeled in all of its constituent parts at the rock and surface levels.


2015 ◽  
Vol 50 (1) ◽  
pp. 29-38 ◽  
Author(s):  
MS Shah ◽  
HMZ Hossain

Decline curve analysis of well no KTL-04 from the Kailashtila gas field in northeastern Bangladesh has been examined to identify their natural gas production optimization. KTL-04 is one of the major gas producing well of Kailashtila gas field which producing 16.00 mmscfd. Conventional gas production methods depend on enormous computational efforts since production systems from reservoir to a gathering point. The overall performance of a gas production system is determined by flow rate which is involved with system or wellbore components, reservoir pressure, separator pressure and wellhead pressure. Nodal analysis technique is used to performed gas production optimization of the overall performance of the production system. F.A.S.T. Virtu Well™ analysis suggested that declining reservoir pressure 3346.8, 3299.5, 3285.6 and 3269.3 psi(a) while signifying wellhead pressure with no changing of tubing diameter and skin factor thus daily gas production capacity is optimized to 19.637, 24.198, 25.469, and 26.922 mmscfd, respectively.Bangladesh J. Sci. Ind. Res. 50(1), 29-38, 2015


2021 ◽  
Author(s):  
Bashirul Haq

Abstract Sour gas reservoirs are vital sources for natural gas production. Sulphur deposition in the reservoir reduces a considerable amount of gas production due to permeability reduction. Consequently, well health monitoring and early prediction of Sulphur deposition are crucial for effective gas production from a sour gas reservoir. Dynamic gas material balance analysis is a useful technique in calculating gas initially in place utilizing the flowing wellhead or bottom hole pressures and rates during the well's lifetime. The approach did not apply to monitor a producing gas's health well and detect Sulphur deposition. This work aims to (i) modify dynamic gas material balance equation by adding the Sulphur deposition term, (ii) build a model to predict and validate the issue utilizing the modified equation. A unique form of the flowing material balance is developed by including Sulphur residue term. The curve fitting tool and modified flowing gas material balance are applied to predict well-expected behaviour. The variation between expected and actual performance indicates the health issue of a well. Initial, individual components of the model are tested. Then the model is validated with the known values. The workflow is applied to active gas field and correctly detected the health issue. The novel workflow can accurately predict Sulphur evidence. Besides,the workflow can notify the production engineers to take corrective measures about the subject. Keywords: Sulfur deposition, Dynamic gas material balance analysis, Workflow


2021 ◽  
pp. 1-67
Author(s):  
Stewart Smith ◽  
Olesya Zimina ◽  
Surender Manral ◽  
Michael Nickel

Seismic fault detection using machine learning techniques, in particular the convolution neural network (CNN), is becoming a widely accepted practice in the field of seismic interpretation. Machine learning algorithms are trained to mimic the capabilities of an experienced interpreter by recognizing patterns within seismic data and classifying them. Regardless of the method of seismic fault detection, interpretation or extraction of 3D fault representations from edge evidence or fault probability volumes is routine. Extracted fault representations are important to the understanding of the subsurface geology and are a critical input to upstream workflows including structural framework definition, static reservoir and petroleum system modeling, and well planning and de-risking activities. Efforts to automate the detection and extraction of geological features from seismic data have evolved in line with advances in computer algorithms, hardware, and machine learning techniques. We have developed an assisted fault interpretation workflow for seismic fault detection and extraction, demonstrated through a case study from the Groningen gas field of the Upper Permian, Dutch Rotliegend; a heavily faulted, subsalt gas field located onshore, NE Netherlands. Supervised using interpreter-led labeling, we apply a 2D multi-CNN to detect faults within a 3D pre-stack depth migrated seismic dataset. After prediction, we apply a geometric evaluation of predicted faults, using a principal component analysis (PCA) to produce geometric attribute representations (strike azimuth and planarity) of the fault prediction. Strike azimuth and planarity attributes are used to validate and automatically extract consistent 3D fault geometries, providing geological context to the interpreter and input to dependent workflows more efficiently.


Sign in / Sign up

Export Citation Format

Share Document