scholarly journals Field-wide reservoir compressibility estimation through inversion of subsidence data above the Groningen gas field

2017 ◽  
Vol 96 (5) ◽  
pp. s117-s129 ◽  
Author(s):  
Rob M.H.E. van Eijs ◽  
Onno van der Wal

AbstractNot long after discovery of the Groningen field, gas-production-induced compaction and consequent land subsidence was recognised to be a potential threat to groundwater management in the province of Groningen, in addition to the fact that parts of the province lie below sea level. More recently, NAM's seismological model also pointed to a correlation between reservoir compaction and the observed induced seismicity above the field. In addition to the already existing requirement for accurate subsidence predictions, this demanded a more accurate description of the expected spatial and temporal development of compaction.Since the start of production in 1963, multiple levelling campaigns have gathered a unique set of deformation measurements used to calibrate geomechanical models. In this paper we present a methodology to model compaction and subsidence, combining results from rock mechanics experiments and surface deformation measurements. Besides the optical spirit-levelling data, InSAR data are also used for inversion to compaction and calibration of compaction models. Residual analysis, i.e. analysis of the difference between measurement and model output, provides confidence in the model results used for subsidence forecasting and as input to seismological models.

2017 ◽  
Vol 96 (5) ◽  
pp. s175-s182 ◽  
Author(s):  
Stephen J. Bourne ◽  
Stephen J. Oates

AbstractThis paper reviews the evolution of a sequence of seismological models developed and implemented as part of a workflow for Probabilistic Seismic Hazard and Risk Assessment of the seismicity induced by gas production from the Groningen gas field. These are semi-empirical statistical geomechanical models derived from observations of production-induced seismicity, reservoir compaction and structure of the field itself. Initial versions of the seismological model were based on a characterisation of the seismicity in terms of its moment budget. Subsequent versions of the model were formulated in terms of seismic event rates, this change being driven in part by the reduction in variability of the model forecasts in this domain. Our approach makes use of the Epidemic Type After Shock model (ETAS) to characterise spatial and temporal clustering of earthquakes and has been extended to also incorporate the concentration of moment release on pre-existing faults and other reservoir topographic structures.


Author(s):  
Pauline P. Kruiver ◽  
Manos Pefkos ◽  
Erik Meijles ◽  
Gerard Aalbersberg ◽  
Xander Campman ◽  
...  

AbstractIn order to inform decision-making regarding measures to mitigate the impact of induced seismicity in the Groningen gas field in the Netherlands, a comprehensive seismic risk model has been developed. Starting with gas production scenarios and the consequent reservoir compaction, the model generates synthetic earthquake catalogues which are deployed in Monte Carlo analyses, predicting ground motions at a buried reference rock horizon that are combined with nonlinear amplification factors to estimate response spectral accelerations at the surface. These motions are combined with fragility functions defined for the exposed buildings throughout the region to estimate damage levels, which in turn are transformed to risk in terms of injury through consequence functions. Several older and potentially vulnerable buildings are located on dwelling mounds that were constructed from soils and organic material as a flood defence. These anthropogenic structures are not included in the soil profile models used to develop the amplification factors and hence their influence has not been included in the risk analyses to date. To address this gap in the model, concerted studies have been identified to characterize the dwelling mounds. These include new shear-wave velocity measurements that have enabled dynamic site response analyses to determine the modification of ground shaking due to the presence of the mound. A scheme has then been developed to incorporate the dwelling mounds into the risk calculations, which included an assessment of whether the soil-structure interaction effects for buildings founded on the mounds required modification of the seismic fragility functions.


2020 ◽  
Author(s):  
Mohammad Hadi Mehranpour ◽  
Suzanne J. T. Hangx ◽  
Chris J. Spiers

<p>Predicting reservoir compaction resulting from fluid depletion is important to assess potential hazards and risks associated with fluid production, such as surface subsidence and induced seismicity. Globally, many producing oil and gas fields are experiencing these phenomena. The giant Dutch Groningen gas field, the Netherlands, is currently measuring up to 35 cm of surface subsidence and experiencing widespread induced seismicity. To accurately predict reservoir compaction, reservoir-scale models incorporating realistic grain-scale microphysical processes are needed. As a first step towards that aim, Discrete Element Method (DEM) modeling can be used to predict the compaction behavior of granular materials at the cm/dm-scale, under a wide range of conditions representing realistic in-situ stress and pressure conditions.</p><p>Laboratory experiments on the reservoir of the Groningen gas field, the Slochteren sandstone, have shown elastic deformation, inelastic deformation due to clay film consolidation, and inelastic deformation due to grain sliding and grain failure. Since the available contact models for DEM modeling do not yet incorporate all of these grain-scale processes, a new contact model, the Slochteren sandstone contact model (SSCM), was developed to explicitly take these mechanisms into account and integrate them into Particle Flow Code (PFC), which is a powerful DEM approach.</p><p>In SSCM the blunt conical contact with an apex angle close to 180˚ is assumed to properly model the elastic behavior, as well as the grain failure mechanism. Compacting an assembly of particles with this type of contact model, results in a range of contact shapes, from point to long contacts, which is compatible with microstructural observations of Slochteren sandstone.  The deformation of thin intergranular clay coatings is implemented following the microphysical model proposed by Pijnenburg et al. (2019a).</p><p>The model allows for the systematic investigation of porosity, grain size distribution and intergranular clay film content on compaction behavior. The model was calibrated against a limited number of hydrostatic and deviatoric stress experiments (Pijnenburg et al. 2019b) and verified against an independent set of uniaxial compressive experiments (Hol et al. 2018) with a range of porosities, grain size distributions and clay content. The calibrated model was also used to make predictions of the compaction behavior of Slochteren sandstone. These predictions were compared to field measurements of in-situ compaction and showed an acceptable match if the uncertainties of field measurements are considered in calculations.</p><p>References:</p><p>Pijnenburg, R.P.J., Verberne, B.A., Hangx, S.J.T. and Spiers, C.J., 2019. Intergranular clay films control inelastic deformation in the Groningen gas reservoir: Evidence from split‐cylinder deformation tests. Journal of Geophysical Research: Solid Earth.</p><p>Pijnenburg, R.P.J., Verberne, B.A., Hangx, S.J.T. and Spiers, C.J., 2019. Inelastic deformation of the Slochteren sandstone: Stress‐strain relations and implications for induced seismicity in the Groningen gas field. Journal of Geophysical Research: Solid Earth.</p><p>Hol, S., van der Linden, A., Bierman, S., Marcelis, F. and Makurat, A., 2018. Rock physical controls on production-induced compaction in the Groningen Field. Scientific reports, 8(1), p.7156.</p>


2017 ◽  
Vol 96 (5) ◽  
pp. s55-s69 ◽  
Author(s):  
Christopher J. Spiers ◽  
Suzanne J.T. Hangx ◽  
André R. Niemeijer

AbstractThis paper describes a research programme recently initiated at Utrecht University that aims to contribute new, fundamental physical understanding and quantitative descriptions of rock and fault behaviour needed to advance understanding of reservoir compaction and fault behaviour in the context of induced seismicity and subsidence in the Groningen gas field. The NAM-funded programme involves experimental rock and fault mechanics work, microscale observational studies to determine the processes that control reservoir rock deformation and fault slip, modelling and experimental work aimed at establishing upscaling rules between laboratory and field scales, and geomechanical modelling of fault rupture and earthquake generation at the reservoir scale. Here, we focus on describing the programme and its intended contribution to understanding the response of the Groningen field to gas production. The key knowledge gaps that drive the programme are discussed and the approaches employed to address them are highlighted. Some of the first results emerging from the work in progress are also reported briefly and are providing important new insights.


2020 ◽  
Author(s):  
Stephen Bourne ◽  
Steve Oates

<p>Geological faults may fail and produce earthquakes due to external stresses induced by hydrocarbon recovery, geothermal extraction, CO<sub>2</sub> storage or subsurface energy storage. The associated hazard and risk critically depend on the spatiotemporal and size distribution of any induced seismicity. The observed statistics of induced seismicity within the Groningen gas field evolve as non-linear functions of the poroelastic stresses generated by pore pressure depletion since 1965. The rate of earthquake initiation per unit stress has systematically increased as an exponential-like function of cumulative incremental stress over at least the last 25 years of gas production. The expected size of these earthquakes also increased in a manner consistent with a stress-dependent tapering of the seismic moment power-law distribution. Aftershocks of these induced earthquakes are also observed, although evidence for any stress-dependent aftershock productivity or spatiotemporal clustering is inconclusive.</p><p>These observations are consistent with the reactivation of a mechanically disordered fault system characterized by a large, stochastic prestress distribution. If this prestress variability significantly exceeds the induced stress loads, as well as the earthquake stress drops, then the space-time-size distribution of induced earthquakes may be described by mean field theories within statistical fracture mechanics. A probabilistic seismological model based on these theories matches the history of induced seismicity within the Groningen region and correctly forecasts the seismicity response to reduced gas production rates designed to lower the associated seismic hazard and risk.</p>


Author(s):  
P. A. Fokker ◽  
K. Van Thienen-Visser

Abstract. Hydrocarbon extraction lead to compaction of the gas reservoir which is visible as subsidence on the surface. Subsidence measurements can therefore be used to better estimate reservoir parameters. Total subsidence is derived from the result of the measurement of height differences between optical benchmarks. The procedure from optical height difference measurements to absolute subsidence is an inversion, and the result is often used as an input for consequent inversions on the reservoir. We have used the difference measurements directly to invert for compaction of the Groningen gas reservoir in the Netherlands. We have used a linear inversion exercise to update an already existing reservoir compaction model of the field. This procedure yielded areas of increased and decreased levels of compaction compared to the existing compaction model in agreement with observed discrepancies in porosity and aquifer activity.


Author(s):  
Molly Luginbuhl ◽  
John B. Rundle ◽  
Donald L. Turcotte

A standard approach to quantifying the seismic hazard is the relative intensity (RI) method. It is assumed that the rate of seismicity is constant in time and the rate of occurrence of small earthquakes is extrapolated to large earthquakes using Gutenberg–Richter scaling. We introduce nowcasting to extend RI forecasting to time-dependent seismicity, for example, during an aftershock sequence. Nowcasting uses ‘natural time’; in seismicity natural time is the event count of small earthquakes. The event count for small earthquakes is extrapolated to larger earthquakes using Gutenberg–Richter scaling. We first review the concepts of natural time and nowcasting and then illustrate seismic nowcasting with three examples. We first consider the aftershock sequence of the 2004 Parkfield earthquake on the San Andreas fault in California. Some earthquakes have higher rates of aftershock activity than other earthquakes of the same magnitude. Our approach allows the determination of the rate in real time during the aftershock sequence. We also consider two examples of induced earthquakes. Large injections of waste water from petroleum extraction have generated high rates of induced seismicity in Oklahoma. The extraction of natural gas from the Groningen gas field in The Netherlands has also generated very damaging earthquakes. In order to reduce the seismic activity, rates of injection and withdrawal have been reduced in these two cases. We show how nowcasting can be used to assess the success of these efforts. This article is part of the theme issue ‘Statistical physics of fracture and earthquakes’.


Geology ◽  
2020 ◽  
Author(s):  
Berend A. Verberne ◽  
Suzanne J.T. Hangx ◽  
Ronald P.J. Pijnenburg ◽  
Maartje F. Hamers ◽  
Martyn R. Drury ◽  
...  

Europe’s largest gas field, the Groningen field (the Netherlands), is widely known for induced subsidence and seismicity caused by gas pressure depletion and associated compaction of the sandstone reservoir. Whether compaction is elastic or partly inelastic, as implied by recent experiments, is a key factor in forecasting system behavior and seismic hazard. We sought evidence for inelastic deformation through comparative microstructural analysis of unique drill core recovered from the seismogenic center of the field in 2015, 50 yr after gas production started, versus core recovered before production (1965). Quartz grain fracturing, crack healing, and stress-induced Dauphiné twinning are equally developed in the 2015 and 1965 cores, with the only measurable effect of gas production being enhanced microcracking of sparse K-feldspar grains in the 2015 core. Interpreting these grains as strain markers, we suggest that reservoir compaction involves elastic strain plus inelastic compression of weak clay films within grain contacts.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. O39-O55 ◽  
Author(s):  
Alessio Rucci ◽  
D. W. Vasco ◽  
Fabrizio Novali

Deformation in the overburden proves useful in deducing spatial and temporal changes in the volume of a producing reservoir. Based on these changes, we have estimated diffusive traveltimes associated with the transient flow due to production, and then, as the solution of a linear inverse problem, the effective permeability of the reservoir. An advantage of the approach based on traveltimes, as opposed to one based on the amplitude of surface deformation, is that it is much less sensitive to the exact geomechanical properties of the reservoir and overburden. Inequalities constrain the inversion, under the assumption that the fluid production only results in pore volume decreases within the reservoir. The formulation has been applied to satellite-based estimates of deformation in the material overlying a thin gas production zone at the Krechba field in Algeria. The peak displacement after three years of gas production is found to be approximately [Formula: see text], overlying the eastern margin of the anticlinal structure defining the gas field. Using data from 15 irregularly spaced images of range change, we have calculated the diffusive traveltimes associated with the startup of a gas production well. The inequality constraints were incorporated into the estimates of model parameter resolution and covariance, improving the resolution by roughly 30% to 40%.


Sign in / Sign up

Export Citation Format

Share Document