TEMPORAL AND SPATIAL DISTRIBUTION OF ICE-RAFTED MINERAL GRAINS IN PLIOCENE SEDIMENTS OF THE NORTH ATLANTIC: IMPLICATIONS FOR LATE CENOZOIC CLIMATIC HISTORY

Author(s):  
RICHARD Z. POORE
Author(s):  
Minhua Ling ◽  
Hongbao Han ◽  
Xingling Wei ◽  
Cuimei Lv

Abstract The Huang-Huai-Hai Plain is an important commercial grain production base in China. Understanding the temporal and spatial variations in precipitation can help prevent drought and flood disasters and ensure food security. Based on the precipitation data for the Huang-Huai-Hai Plain from 1960 to 2019, this study analysed the spatiotemporal distribution of total precipitation at different time scales using the Mann–Kendall test, the wavelet analysis, the empirical orthogonal function (EOF), and the centre-of-gravity model. The results were as follows: (1) The winter precipitation showed a significant upward trend on the Huang-Huai-Hai Plain, while other seasonal trends were not significant. (2) The precipitation on the Huang-Huai-Hai Plain shows a zonal decreasing distribution from southeast to northwest. (3) The application of the EOF method revealed the temporal and spatial distribution characteristics of the precipitation field. The cumulative variance contribution rate of the first two eigenvectors reached 51.5%, revealing two typical distribution fields, namely a ‘global pattern’ and a ‘north-south pattern’. The ‘global pattern’ is the decisive mode, indicating that precipitation on the Huang-Huai-Hai Plain is affected by large-scale weather systems. (4) The annual precipitation barycentres on the Huang-Huai-Hai Plain were located in Jining city and Taian city, Shandong Province, and the spatial distribution pattern was north-south. The annual precipitation barycentres tended to move southwest, but the trend was not obvious. The annual precipitation barycentre is expected to continue to shift to the north in 2020.


2019 ◽  
Vol 11 (1) ◽  
pp. 367-377 ◽  
Author(s):  
Milivoj B. Gavrilov ◽  
Tin Lukić ◽  
Natalija Janc ◽  
Biljana Basarin ◽  
Slobodan B. Marković

Abstract In investigating aridity in Vojvodina (a region in the northern part of Serbia), the Forestry Aridity Index (FAI) was used. This index was chosen due to being one of the most suitable indices for the analysis of the interaction of climate and vegetative processes, especially in forestry. The spatial distribution of the FAI for annual and decennial periods, as well as its annual trend, is analysed. Satisfactory compatibility between the low (forest) and high (steppe) FAI values with the forest and steppe vegetation on the Vojvodina terrains was obtained. The calculated values of the FAI showed that there was no particular annual trend. These results correspond to the earlier calculated values of the De Martonne aridity index and the Pinna combinative index. Therefore, it can be concluded that there were no recent changes in aridity during the observed period. Results of the correlation indicate weak linearity between the FAI, and the North Atlantic Oscillation and El-Niño South Oscillation.


2011 ◽  
Vol 139 (9) ◽  
pp. 3052-3068 ◽  
Author(s):  
Dominik Renggli ◽  
Gregor C. Leckebusch ◽  
Uwe Ulbrich ◽  
Stephanie N. Gleixner ◽  
Eberhard Faust

The science of seasonal predictions has advanced considerably in the last decade. Today, operational predictions are generated by several institutions, especially for variables such as (sea) surface temperatures and precipitation. In contrast, few studies have been conducted on the seasonal predictability of extreme meteorological events such as European windstorms in winter. In this study, the predictive skill of extratropical wintertime windstorms in the North Atlantic/European region is explored in sets of seasonal hindcast ensembles from the Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) and the ENSEMBLE-based predictions of climate changes and their impacts (ENSEMBLES) projects. The observed temporal and spatial climatological distributions of these windstorms are reasonably well reproduced in the hindcast data. Using hindcasts starting on 1 November, significant predictive skill is found for the December–February windstorm frequency in the period 1980–2001, but also for the January–April storm frequency. Specifically, the model suite run at Météo France shows consistently high skill. Some aspects of the variability of skill are discussed. Predictive skill in the 1980–2001 period is usually higher than for the 1960–2001 period. Furthermore, the level of skill turns out to be related to the storm frequency of a given winter. Generally, winters with high storm frequency are better predicted than winters with medium storm frequency. Physical mechanisms potentially leading to such a variability of skill are discussed.


2018 ◽  
Vol 18 (3) ◽  
pp. 1535-1554 ◽  
Author(s):  
Fengcheng Wu ◽  
Pinhua Xie ◽  
Ang Li ◽  
Fusheng Mou ◽  
Hao Chen ◽  
...  

Abstract. Recently, Chinese cities have suffered severe events of haze air pollution, particularly in the North China Plain (NCP). Investigating the temporal and spatial distribution of pollutants, emissions, and pollution transport is necessary to better understand the effect of various sources on air quality. We report on mobile differential optical absorption spectroscopy (mobile DOAS) observations of precursors SO2 and NO2 vertical columns in the NCP in the summer of 2013 (from 11 June to 7 July) in this study. The different temporal and spatial distributions of SO2 and NO2 vertical column density (VCD) over this area are characterized under various wind fields. The results show that transport from the southern NCP strongly affects air quality in Beijing, and the transport route, particularly SO2 transport on the route of Shijiazhuang–Baoding–Beijing, is identified. In addition, the major contributors to SO2 along the route of Shijiazhuang–Baoding–Beijing are elevated sources compared to low area sources for the route of Dezhou–Cangzhou–Tianjin–Beijing; this is found using the interrelated analysis between in situ and mobile DOAS observations during the measurement periods. Furthermore, the discussions on hot spots near the city of JiNan show that average observed width of polluted air mass is 11.83 and 17.23 km associated with air mass diffusion, which is approximately 60 km away from emission sources based on geometrical estimation. Finally, a reasonable agreement exists between the Ozone Monitoring Instrument (OMI) and mobile DOAS observations, with a correlation coefficient (R2) of 0.65 for NO2 VCDs. Both datasets also have a similar spatial pattern. The fitted slope of 0.55 is significantly less than unity, which can reflect the contamination of local sources, and OMI observations are needed to improve the sensitivities to the near-surface emission sources through improvements of the retrieval algorithm or the resolution of satellites.


Sign in / Sign up

Export Citation Format

Share Document