scholarly journals Analysis of the composition and processing technologies of dispersed iron‑containing waste

Author(s):  
N. I. Urbanovich ◽  
S. V. Korneev ◽  
V. I. Volosatikov ◽  
D. O. Komarov

The article discusses the types of various dusty iron‑containing waste generated in metallurgical and foundry production. Rational waste processing technologies are considered. The analysis of the chemical composition of iron‑containing waste, morphology and particle size is presented. Variants of processing and use technology that are acceptable for the conditions of the Republic of Belarus are proposed.

2021 ◽  
Vol 13 (4) ◽  
pp. 1866
Author(s):  
Noor Allesya Alis Ramli ◽  
Faradiella Mohd Kusin ◽  
Verma Loretta M. Molahid

Mining waste may contain potential minerals that can act as essential feedstock for long-term carbon sequestration through a mineral carbonation process. This study attempts to identify the mineralogical and chemical composition of iron ore mining waste alongside the effects of particle size, temperature, and pH on carbonation efficiency. The samples were found to be alkaline in nature (pH of 6.9–7.5) and contained small-sized particles of clay and silt, thus indicating their suitability for mineral carbonation reactions. Samples were composed of important silicate minerals needed for the formation of carbonates such as wollastonite, anorthite, diopside, perovskite, johannsenite, and magnesium aluminum silicate, and the Fe-bearing mineral magnetite. The presence of Fe2O3 (39.6–62.9%) and CaO (7.2–15.2%) indicated the potential of the waste to sequester carbon dioxide because these oxides are important divalent cations for mineral carbonation. The use of small-sized mine-waste particles enables the enhancement of carbonation efficiency, i.e., particles of <38 µm showed a greater extent of Fe and Ca carbonation efficiency (between 1.6–6.7%) compared to particles of <63 µm (0.9–5.7%) and 75 µm (0.7–6.0%). Increasing the reaction temperature from 80 °C to 150–200 °C resulted in a higher Fe and Ca carbonation efficiency of some samples between 0.9–5.8% and 0.8–4.0%, respectively. The effect of increasing the pH from 8–12 was notably observed in Fe carbonation efficiency of between 0.7–5.9% (pH 12) compared to 0.6–3.3% (pH 8). Ca carbonation efficiency was moderately observed (0.7–5.5%) as with the increasing pH between 8–10. Therefore, it has been evidenced that mineralogical and chemical composition were of great importance for the mineral carbonation process, and that the effects of particle size, pH, and temperature of iron mining waste were influential in determining carbonation efficiency. Findings would be beneficial for sustaining the mining industry while taking into account the issue of waste production in tackling the global carbon emission concerns.


Resources ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 108 ◽  
Author(s):  
Alberto Mannu ◽  
Gina Vlahopoulou ◽  
Paolo Urgeghe ◽  
Monica Ferro ◽  
Alessandra Del Caro ◽  
...  

The chemical composition and the color of samples of waste cooking oils (WCOs) were determined prior to and after filtration on two different pads of bentonite differing in particle size. The volatile fraction was monitored by headspace solid-phase microextraction (HS-SPME) coupled with gas-chromatography, while the variation of the composition of the main components was analyzed by 1H NMR. Both techniques allowed the detection of some decomposition products, such as polymers, terpenes, and derivatives of the Maillard process. The analysis of the chemical composition prior to and after bentonite treatment revealed a tendency for the clays to retain specific chemical groups (such as carboxylic acids or double bonds), independent of their particle size. A pair comparison test was conducted in order to detect the sensory differences of the intensity of aroma between the WCO treated with the two different bentonites. In addition, characterization of the bentonite by means of powder X-ray diffraction (XRD) and thermogravimetric measurements (TG) was performed.


2021 ◽  
Vol 410 ◽  
pp. 778-783
Author(s):  
Pavel V. Matyukhin ◽  
Daler I. Mirzoev

The paper presents the results of ferriferous wastes modification process research carried on the basis of JCS “Leninobad rare metals Plant” located in the Republic of Tajikistan. The wastes for the study were taken from the western tailing. The article presents the justification of the chosen wastes as a filling material in the development of new radiation protective composite building materials. The data on the initial ferriferous chemical composition of the tailing wastes and the chemical composition of the material that passed the enrichment process is presented. The study contains microphotos of ferriferous haematite raw material particles surface before and after completing the modifying process. The paper presents and describes the study of X-ray phase analysis diffractograms of enriched iron-containing wastes before and after the modification process. The current research proves that the enrichment ferriferous wastes particles modification process is possible and as a result it can be used as a filling for the development of new kinds of radioprotective composite materials.


2018 ◽  
Vol 48 (6) ◽  
Author(s):  
Mônica Ikeda ◽  
Carlos Wanderlei Piler Carvalho ◽  
Cristiane Vieira Helm ◽  
Henriette Monteiro Cordeiro de Azeredo ◽  
Rossana Catie Bueno de Gogoy ◽  
...  

ABSTRACT: Brazilian pine seeds (pinhão) are gluten-free seeds produced by the native pine species named Araucaria angustifolia. In this study, gluten-free cake mixes composed of Brazilian pine seed flour and rice flour were developed. The cake mixes were produced following a Simplex Centroid experimental design, with rice flour and Brazilian pine seed flour contents ranging from 50 to 100% and from 0 to 50%, respectively. Mixes were analyzed for chemical composition, apparent paste viscosity, and particle size distribution. The resulting cakes were analyzed for sensory acceptance, texture, specific volume and chemical composition. The Brazilian pine seed flour showed a peak viscosity on heating of 1.761Pa.s against 4.747Pa.s for the 100% rice flour sample. The variation of firmness of cakes decreased with increasing percentage of Brazilian pine seed flour. Cakes containing Brazilian pine seed flour at 25-37.5% of the formulation presented highest overall acceptance.


2020 ◽  
Author(s):  
Roméo Barnabé Bohounton ◽  
Luc Salako Djogbénou ◽  
Oswald Yédjinnavênan Djihinto ◽  
Oronce Sedjro-Ludolphe Dedome ◽  
Pierre Marie Sovegnon ◽  
...  

AbstractThe use of synthetic insecticides is responsible for many cases of resistance in insects. Therefore, the use of natural molecules of ecological interest with insecticidal properties turns out to be an alternative approach to the use of synthetic insecticides. This study aims at investigating the larvicidal, adulticidal activity and the composition of the essential oil of Aeollanthus pubescens Benth on the major malaria vector Anopheles gambiae.The leaves of Aeollanthus pubescens were collected in the South of the Republic of Benin. Three reference strains of Anopheles gambiae s.s. such as Kisumu, Kiskdr and Acerkis were used. The chemical composition of the essential oil was analysed by gas chromatography coupled to mass spectrometry. Larvae were exposed to the essential oil extract for 24 h. Adult mosquitoes were exposed to the fragment nets coated with the essential oil for 3 min. Larval mortality and adult survivorship were monitored.Fourteen components were identified representing 98.31% of the total of oil. The major components were carvacrol (51.06 %), thymyle acetate (14.01 %) and γ-terpinene (10.60 %). The essential oil has remarkable larvicidal properties with LC50 of 29.26, 22.65, and 28.37 ppm respectively on Kisumu, Acerkis and Kiskdr strains. With the fragment net treated at 165 µg/cm2, the KDT50 of both Acerkis (1.71 s, p < 0.001) and Kiskdr (2.67 s, p < 0.001) individuals were significantly lower than that of Kisumu (3.77 s). The lifespan of the three mosquito strains decreased respectively to one day for Kisumu (p < 0.001), two days for Acerkis (p < 0.001) and three days for Kiskdr (p < 0.001) compared to their control.Our findings show that the Aeollanthus pubescens essential oil is an efficient larvicide and adulticide against malaria vector Anopheles gambiae. This bioinsecticidal activity is a promising discovery for the control of the resistant malaria-transmitting vectors.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Changcheng An ◽  
Changjiao Sun ◽  
Ningjun Li ◽  
Bingna Huang ◽  
Jiajun Jiang ◽  
...  

AbstractNanomaterials (NMs) have received considerable attention in the field of agrochemicals due to their special properties, such as small particle size, surface structure, solubility and chemical composition. The application of NMs and nanotechnology in agrochemicals dramatically overcomes the defects of conventional agrochemicals, including low bioavailability, easy photolysis, and organic solvent pollution, etc. In this review, we describe advances in the application of NMs in chemical pesticides and fertilizers, which are the two earliest and most researched areas of NMs in agrochemicals. Besides, this article concerns with the new applications of NMs in other agrochemicals, such as bio-pesticides, nucleic acid pesticides, plant growth regulators (PGRs), and pheromone. We also discuss challenges and the industrialization trend of NMs in the field of agrochemicals. Constructing nano-agrochemical delivery system via NMs and nanotechnology facilitates the improvement of the stability and dispersion of active ingredients, promotes the precise delivery of agrochemicals, reduces residual pollution and decreases labor cost in different application scenarios, which is potential to maintain the sustainability of agricultural systems and improve food security by increasing the efficacy of agricultural inputs. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document