scholarly journals Influence of Geometry and Boundary Conditions in Area of Cohesion between Materials on the Reflection of an Ultrasonic Beam. Part 1. Theoretical research

2021 ◽  
Vol 12 (2) ◽  
pp. 124-132
Author(s):  
A. R. Bayev ◽  
A. L. Mayorov ◽  
N. V. Levkovich ◽  
D. V. Shavlovskiy ◽  
M. V. Asadchaya

The improvement of efficiency, reliability and productivity of ultrasonic testing of objects with cohesion between materials connected by welding, soldering, gluing, etc. is 'an important problem of the modern production technologies. The purpose of the paper is to determine in 3D space the conditions for increasing the sensitivity and reliability of the flaw detection in the cohesion zone between materials when the form of defect interface can be different.In the first part of the theoretical study the features of the formation of the acoustic fields of ultrasonic waves scattered from solid's interface when spot of an acoustic beam crosses the boundary of the defective region in the shape of an ellipse or a long strip have been investigated. In this case, the boundary conditions in the defect area change discretely or linearly.It was suggested to use a phase shift between reflected waves from the defect and defect-free interfaces as the more informative parameter depending on the cohesion between materials. There is shown that there are conditions to achieve sufficiently high sensitivity detection of interface defects when the scattered waves receiving are to be at angles outside the main directivity lobe of the scattering field pattern. The evolution features of the scattering field structure which are needed for the development of the method of evaluation the cohesion of materials has been got.

Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 242
Author(s):  
YoungLae Kim ◽  
Sungjong Cho ◽  
Ik Keun Park

The anisotropy and inhomogeneity exhibited by austenitic steel in welds poses a challenge to nondestructive testing employing ultrasonic waves, which is predominantly utilized for the inspection of welds in power plants. In this study, we assess the reliability of phased array ultrasonic testing (PAUT) by analyzing the flaw detection sensitivity of ultrasonic beams in anisotropic welds, based on the inspection conditions. First, we simulated the sectorial scan technique, frequently employed for the inspection of actual welds, while taking into account the ultrasonic wave mode, frequency, and shape and position of a flaw. Subsequently, we analyzed the flaw sensitivity by comparing A-scan signals and S-scan results. The sensitivity analysis results confirmed the detection of all flaws by considering at least two inspection methods based on the shape and position of the flaw. Furthermore, we verified our model by performing an experiment under the same conditions as the simulation and found that the results were in agreement. Hence, we find that the simulation modeling technique proposed in this study can be utilized to develop suitable inspection conditions, according to the flaw characteristics or inspection environment.


2021 ◽  
Vol 12 (3) ◽  
pp. 211-219
Author(s):  
A. R. Baev ◽  
A. I. Мitkovets ◽  
M. V. Asadchaya ◽  
A. L. Mayorov

Magnetic fluids belong to the class of nanomaterials with a high gain of light absorption, aggregative and sedimentation stability as well as controllability by external fields, which is of interest to use in the field of optoacoustics. The purpose of the work was to experimentally study the effect of the optoacoustic transformation in a magnetic fluid, depending on the concentration of magnetic colloidal particles, boundary conditions, intensity of the laser as well as to identify the possibilities of using the magnetic fluid as an element of the optoacoustic transformation in a number of applications.A brief analysis of the optoacoustic transformation mechanism in a magnetic fluid was carried out and a technique and an installation that implements the shadow measurement variant developed. A Lotis type laser was used as a source of ultrasonic pulse-laser excitation in magnetic fluids. A quartz and air were used as a material transmitting the energy of laser radiation in a magnetic fluid. Receiving of ultrasound signals was made by a piezoelectric probe at a working frequency of 5 MHz. In the measurement process, the concentration of the dispersed phase in tmagnetic fluid was varied from zero to 8 % and the energy in the impulse – from zero to 10 mJ.For the first time, it was established that: a) an amplitude of the function of the optoacoustic transformation in a magnetic fluid, depending on the concentration of the dispersed phase, has a maximum determined by the fluid physical properties and boundary conditions; b) for all samples within the measurement error, a quasilinear dependence of the specified amplitude of energy in the laser pulse in the range of 0–8 MJ has been established.A number ways of the optoacoustic effects in magnetic fluids to use in ultrasonic testing, measuring the intensity of the laser radiation had been suggested.


2021 ◽  
pp. 4-12
Author(s):  
V. G. Shevaldykin

Creeping ultrasonic waves have long been successfully used for flaw detection of near-surface and near-bottom zones of metal products. However, due to the fact that the creeping wave generates a lateral transverse wave directed into the metal volume at the third critical angle, it is also possible to test internal defects in principle. At known velocities of propagation of longitudinal and transverse waves in the metal, the third critical angle is easily calculated. Therefore, the time of propagation of the ultrasonic signal along any trajectory between points on the surface and in the volume of the metal can be calculated. Usually, creeping waves are used to test products of plane-parallel shape. There are no cases of their application on curved surfaces in the literature. It is possible that the creeping wave can also propagate over a concave surface. The aim of the article is to test experimentally new ways of using creeping waves. The propagation trajectories of the creeping and lateral transverse waves were studied on a steel plate. The time of passage of the ultrasonic signal along such trajectories of different lengths was measured, and the measurement results were compared with the calculated time values. The measured and calculated values coincided with accuracy sufficient for the coherent accumulation of echo signals that passed through the metal part of the path by the creeping wave and another part of the path by the lateral transverse wave.The propagation of the creeping wave over a concave surface was studied on a steel sample with cylindrical faces of different radii. As a result, it turned out that on a concave surface, the creeping wave propagates at the same speed of longitudinal waves as on a flat surface, but it decays much more strongly with distance. Studies have shown that creeping waves can be used in ultrasonic tomography, where a preliminary calculation of the propagation trajectories of ultrasonic signals is required. The propagation of creeping waves over concave surfaces extends the capabilities of the TOFD method to the area of intube testing


Author(s):  
M.I. Kuzmin ◽  
A.N. Bublik ◽  
P.S. Muzichuk ◽  
L.B. Rudnik ◽  
A.V. Sushkov ◽  
...  

An information system is proposed that uses a new complex methodology for choosing a method for well operation based on applicability criteria and boundary conditions for the parameters of mechanized productivity technologies. A mechanism for selecting technologies is presented, which consists of filtering the general register of technologies according to the selected parameters for assessing the total cost of ownership at the Company’s fields. The process of forming and updating the technology base, criteria of applicability and their boundary conditions is considered. Graphic materials illustrate the prototype of this system. The developed methodology will speed up the process of introducing new production technologies, which in turn will lead to a positive economic effect – a decrease in the total cost of ownership of equipment for oil production at the Exploration and Production Block.


Author(s):  
DONG-RYUN KIM ◽  
JAE-HOON KIM

Adhesive interface tests using ultrasonic waves are far superior to other nondestructive tests for detecting the disbond interface. However, a multilayered structure consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of the reflected waves and the large differences in the acoustic impedances of the various materials. Therefore, ultrasonic tests for detecting the disbond interface of multilayered structures have been applied in very limited areas between the steel case and rubber insulation using an automatic system. The existing ultrasonic test cannot detect the disbond interface between the rubber and propellant of a multilayered structure because most of the ultrasonic waves are absorbed in the rubber material, which has low acoustic impedance. This problem could be overcome by amplifying the ultrasonic waves using the ultrasonic resonance method. The Lamb waves were used to evaluate the instability of the ultrasonic waves caused by the contact condition on the surface of the multilayered structure. In this paper, a new technique to detect the disbond interface between the liner and propellant using the property of ultrasonic resonance and Lamb waves is discussed in detail.


Author(s):  
S. Mishra ◽  
P. K. Kankar ◽  
M. Ishihama

Stamping is a core manufacturing process in automobile industry. The measurement of the press force in stamping process has been the major focus of the research in this area. However, it has been established that the press force is itself an integral of the pressure distribution over the contact surfaces. Also full potential of servo-control stamping machines has not yet been achieved due to lack of appropriate sensing functions. In this study, an effort has been made to monitor the stamping process with the help of ultrasonic waves. The waves are employed to obtain the contact conditions between the work piece and the die. It has been shown that the waveforms are affected not only by the workpiece material and its thickness but also by the angle of inclination. Results show that the reflected waves, being more sensitive than transmitted waves, are influenced by the change in work piece related parameters.


Sign in / Sign up

Export Citation Format

Share Document