scholarly journals The possibility of applying calculation based on queuing theory with the aim of real-time control

Author(s):  
V. I. Kudriavtsev ◽  
О. F. Zirko

Possibilities of using mathematical models of the theory of queues for the purpose of control of processes of discrete productions modeled by it in real time are investigated. As a model example, a system for managing the rearrangements of service items in queues was considered. For the analysis the methods of calculation of BMAP-controlled systems and the methods of the theory of recovery on periods of employment for queues with vacancies of requirements were used.As a result of research it is found out that mathematical modeling in the theory of queues can be used for simulation of discrete production for the purpose of design and the production analysis, but cannot be used for management of the modeled processes in real time.

Urban Water ◽  
2001 ◽  
Vol 3 (4) ◽  
pp. 241-252 ◽  
Author(s):  
Sophie Duchesne ◽  
Alain Mailhot ◽  
Emeric Dequidt ◽  
Jean-Pierre Villeneuve

1994 ◽  
Vol 29 (1-2) ◽  
pp. 437-444 ◽  
Author(s):  
Fons Nelen

The LOCUS modelling package, which has been designed to assess the performance of an urban drainage system that is controlled in real time is presented. Besides the simulation of 'optimal' controlled systems, LOCUS offers the possibility to simulate local (or static) controlled systems as well (i.e. the present way of operation of most urban drainage systems). Since an identical system description is used in both cases, the difference between the results is only due to the way the system is operated and hence the effects of real time control can be quantified by comparing the results. The use of the model is illustrated by a simple example, which shows that it is worth investigating the potential of real time control before constructing extra storage in the system. For a small fictitious system with limited storage capacity at the downstream section it is shown that this potential is comparable to increasing the storage capacity by 1.5 mm at this particular section.


1995 ◽  
Vol 34 (05) ◽  
pp. 475-488
Author(s):  
B. Seroussi ◽  
J. F. Boisvieux ◽  
V. Morice

Abstract:The monitoring and treatment of patients in a care unit is a complex task in which even the most experienced clinicians can make errors. A hemato-oncology department in which patients undergo chemotherapy asked for a computerized system able to provide intelligent and continuous support in this task. One issue in building such a system is the definition of a control architecture able to manage, in real time, a treatment plan containing prescriptions and protocols in which temporal constraints are expressed in various ways, that is, which supervises the treatment, including controlling the timely execution of prescriptions and suggesting modifications to the plan according to the patient’s evolving condition. The system to solve these issues, called SEPIA, has to manage the dynamic, processes involved in patient care. Its role is to generate, in real time, commands for the patient’s care (execution of tests, administration of drugs) from a plan, and to monitor the patient’s state so that it may propose actions updating the plan. The necessity of an explicit time representation is shown. We propose using a linear time structure towards the past, with precise and absolute dates, open towards the future, and with imprecise and relative dates. Temporal relative scales are introduced to facilitate knowledge representation and access.


2007 ◽  
Vol 73 (12) ◽  
pp. 1369-1374
Author(s):  
Hiromi SATO ◽  
Yuichiro MORIKUNI ◽  
Kiyotaka KATO

Author(s):  
Vladimir V. NEKRASOV

Developing a microcontroller-based system for controlling the flywheel motor of high-dynamics spacecraft using Russian-made parts and components made it possible to make statement of the problem of searching control function for a preset rotation rate of the flywheel rotor. This paper discusses one of the possible options for mathematical study of the stated problem, namely, application of structural analysis based on graph theory. Within the framework of the stated problem a graph was constructed for generating the new required rate, while in order to consider the stochastic case option the incidence and adjacency matrices were constructed. The stated problem was solved using a power matrix which transforms a set of contiguous matrices of the graph of admissible solution edge sequences, the real-time control function was found. Based on the results of this work, operational trials were run for the developed control function of the flywheel motor rotor rotation rate, a math model was constructed for the real-time control function, and conclusions were drawn about the feasibility of implementing the results of this study. Key words: Control function, graph, incidence matrix, adjacency matrix, power matrix, microcontroller control of the flywheel motor, highly dynamic spacecraft.


Sign in / Sign up

Export Citation Format

Share Document