scholarly journals A study of some physical, chemical and biological properties of Slabiaat River waters in Al-Muthanna province, Iraq

2017 ◽  
Vol 14 (2) ◽  
pp. 289-298
Author(s):  
Baghdad Science Journal

Present study was conducted in order to assess Slabiaat water quality by measuring some physical and chemical factors of river water, the study included a choice of three stations along of Slabiaat River in Samawa city, water samples collected a monthly during the period from September 2013 August 2014. The study involved measuring the Air & water temperatures, pH, Electrical conductivity, Total dissolved solids, Dissolved oxygen, Total hardness, calcium hardness, magnesium, turbidity, and some types of bacteria in River water. The study results showed that the values of air & water temperatures have ranged between (20.1-36.6)?C , (10-21.8) in Slabiaat River, respectively . pH values ranged between (6.6-8.7). Electrical conductivity in study sites record values ranged between (2625-9775) µs? cm. Total dissolved solids showed values are changing through months of study and between stations was highest (5500 mg/L) in S3. Dissolved oxygen values ranged between (4-7 mg/L) in Slabiaat River. Total hardness, calcium and magnesium were (690-2100), (500-1020) and (12.15-325.62) mg CaCO3/L, respectively, either turbidity values were the highest value in the river is (98) NTU, and the lowest was (12) NTU. Also,It has been identified Staphylococcus, E. coli, Vibrio, Proteus & Pseudomonas in river waters. Statistically, significant differences have emerged in all physical and chemical characteristics between months at probability (P? 0.05), while did not show between stations, except for calcium hardness.

2018 ◽  
Vol 8 (1) ◽  
pp. 19-26
Author(s):  
Ammar S. Dawood ◽  
Mushtak T. Jabbar ◽  
Mudhar H. Gatea ◽  
Hayfaa J. Al-Tameemi

Abstract The present work evaluated the groundwater quality index (GWQI) depending on some physicochemical analyses of thirteen groundwater samples in the Zubair district in Basra Province, Iraq. The collected groundwater samples were subjected to an extensive physicochemical analysis to evaluate the characteristics of water for drinking purpose according to Iraqi standard. For calculating the (GWQI), twelve water quality parameters were considered; turbidity, pH, chloride, total dissolved solids, total hardness (TH), electrical conductivity (EC), sodium, sulphate, phosphate, calcium, nitrate, and magnesium. The analysis of the results reveals that all the samples surpassed the portability of drinking water limits. High values of the (GWQI) in the obtained groundwater samples could possibly be caused by the higher values of electrical conductivity, total hardness, chloride, total dissolved solids and sodium within the groundwater. The calculated GWQI values ranged from 73.36 to 595.92. The pollution index (PI) was calculated for the study area with values ranged from 2.97 to 8.26. Correlation coefficients amongst the chosen water parameters exhibited some strong relationships. Finally, the analysis shows that the groundwater in this particular area needs to be treated before its consumption, and in addition, it usually needs to avoid the hazard of contamination. Principal component analysis (PCA) and cluster analysis (CA) indicate that the acquiring-data from groundwater samples are explained 90.5 % of the variance in the data with a four-component system that explains a large portion of the total variance of collected data.


2021 ◽  
Author(s):  
Benjamin Ezekeil Bwadi ◽  
Mohammed Bakoji Yusuf ◽  
Ibrahim Abdullahi ◽  
Clement Yakubu Giwa ◽  
Grace Audu

Water is very significant in the development of a stable community, but many societies are confronted with the challenges of poor wastes management system with indiscriminate waste disposal and bad land practices, which easily pollute water sources and consequently degrade water quality. This study was to analyze the physicochemical properties of ground water from multiple point sources in Jalingo, Taraba state of Nigeria. Water samples were collected from twenty seven (27) sites from the study area during the raining and dry seasons. The analysis was carried out to determining the physico-chemical properties of the ground water and comparing with the World Health Organization (WHO) standard for drinking water. The physicochemical properties of ground water analyzed include; odor, taste, temperature and electrical conductivity were tested in the field using water meter tester. Whereas pH, total dissolved solids, alkalinity, hardness, salinity, iron, manganese, fluoride, nitrate, nitrite, chloride, sulphate and dissolved oxygen were analyzed in the laboratory using Wagtech potable water testing equipment. The physical properties of water analyzed were temperature, odor, taste, and turbidity. Whereas the chemical properties of water analyzed were pH, electrical conductivity (EC), total dissolved solids (TDS), alkalinity, hardness, salinity, iron (Fe), manganese (Mn), fluoride (F−), nitrate (NO3−), nitrite (NO2−), Chloride (Cl−), sulphate (SO42−), dissolved oxygen (DO).The result shows the range of the mean values of the temperature(26.7–33.1) oC, p H(6.5–8.9), Fe (0.01–0.08 mg/L), NO3−(0.01–38.5 mg/l), NO2−(0.01–0.09 mg/l), Mn (0.01–0.17 mg/l), F(0.01–0.82 mg/l), alkalinity(39-204 mg/l), salinity (42-508 mg/l), SO4(14-93 mg/l), total dissolved solids (6–637) mg/l, turbidity(0.4–10.6 mg/l), hardness(48-187 mg/l), and fecal coliforms(1–4)fcu/100mi, dissolved oxygen(1.1–6.87)mg/l, EC(10.99–1066)ohm/cm, Cl (10-320 mg/l). All except alkalinity and hardness are within the WHO permissible standards of quality drinking water. The highest alkalinity (204 mg/l), hardness (187 mg/l) and low dissolved oxygen (6.87 mg/l) attributed to the high concentration of dissolved salts and basic cations in the water. The methodology applied in the study was effective in analyzing the physicochemical properties of water in the study area. Therefore, it was recommended that there should be frequent water source testing by stakeholder in water resources with the view to treating the water. Policy maker should also enforce the regulation of the use of chemical fertilizers, agro-chemicals and the indiscriminate waste disposal.


2016 ◽  
Vol 11 (1) ◽  
pp. 301-311 ◽  
Author(s):  
Anjani Kumar ◽  
Prasoon Singh

A geochemical study of mine water in the Western Jharia coalfield area was undertaken to assess its quality and suitability for drinking and domestic purposes. To assess mine water quality of the study area, a systematic sampling was carried out during the monsoon season, 2013. Eighteen representatives mine water sample were collected from both underground (underground sump and surface water discharge) and opencast mines, and analyzed for pH, electrical conductivity (EC), total dissolved solids (TDS) , major cations (Ca2+, Mg2+, Na+ and K+) and major anions (HCO3- F-, Cl-, NO3-, SO42-). The pH of the analyzed mine waters ranged from 6.8 o 8.3 and electrical conductivity (EC) values ranged from 608 uS cm-1 to 1350 uS cm-1. TDS ranged from 432 to 1080 mg L-1 and the spatial differences in TDS reflect the geological formations, hydrological processes and prevailing mining conditions of the region. The anion and cation chemistry indicate the general ionic abundance as: HCO3-> SO42-> Cl-> NO3->F- and Mg2+>Ca2+> Na+> K+ in the mine water of the study area. The water quality assessment indicated that total dissolved solids (TDS), total hardness (TH), magnesium and sulphate are the major parameters of concern in the study area and make it unsuitable for drinking and domestic purposes.


2018 ◽  
Vol 6 (2) ◽  
pp. 1-12 ◽  
Author(s):  
Blessy Baby Mathew ◽  
Nideghatta Beeregowda Kirshnamurthy

AbstractGroundwater samples were collected from the Peenya Industrial area of Bengaluru, India to test its quality, elemental composition and inherent bacterial population. Further analysis was done using GIS Based Geostatistical techniques to study the level of groundwater and to generate various maps of lineament, digital elevation, geomorphology, soil erosion, salt affected areas and water logging in this region. Physical and chemical parameters such as Total Dissolved Solids, pH, temperature, BOD, COD, metal ions present in the water samples were studied along with predominant microbial constituents. The Total Dissolved Solids and Total Hardness were far beyond the maximum concentration levels. Further analysis of the isolated bacteria was done using staining methods and biochemical tests. The results obtained showed that the area under study had wells ranging from shallow to deep heights of 30 to 80 meters, with a wide variety of 10-400 LPM; whereas the lineament map suggested that the area was bound with parallel ridges and joints. The geographical data represented pediplain complexes, anthropogenic terrains and water bodies. The area was found to go through a seasonal water logging and the soil loss was due to sheet erosion and rill erosion. It was also observed that the groundwater was contaminated with heavy metals such as lead, chromium etc. along with a diversified bacterial population.


2020 ◽  
pp. 194-203
Author(s):  
RaviKumar P ◽  
Shridhar D. M ◽  
Prakash K. L

Groundwater samples along with leachate were collected randomly around the municipal solid waste dumping at Mandur village, Bangalore. All the collected samples were analysed for physico-chemical parameters like pH, hardness, electrical conductivity, total dissolved solids, alkalinity, calcium, magnesium, sodium, potassium, chloride, nitrate, sulphate, phosphate using Standard APHA methods during April 2018 (pre-monsoon period). It is apparent from the results that 25.93, 33.34, 14.82 and 81.48 % of groundwater samples respectively recorded higher electrical conductivity (EC ≥ 1000 μS/cm), total dissolved solids ( TDS ≥ 500 mg/L), total hardness (TH ≥ 600 mg/L) and nitrate (NO3 ≥ 45 mg/L), attributed to an interaction between the leachate and the groundwater samples near the core zone. Remaining parameters were well below their respective drinking water quality standard limit.s The Sodium absorption ratio (SAR), Residual sodium carbonate (RSC) and percent sodium values illustrated the suitability of groundwater samples for agricultural practices. Though cluster analysis specified some sort of interaction to exist between leachate and few groundwater samples, analytical outcome of groundwater quality were against such interaction. Average concentration for various parameters in ground water samples were not much affected with leachate interaction. The unsuitability of groundwater for drinking purpose, removal of excess concentration and artificial recharge of groundwater by rainwater harvesting methods could reduce the groundwater pollution level.


Author(s):  
Mohamed Muthana Taher ◽  
Shaif Mohamed Kasem Saleh ◽  
Bassem Obaid Ali Saif

In this study, the concentrations of the physical properties such as the acidity number (pH), temperature (T), electrical conductivity (EC), total dissolved solids (TDS) and total hardness (TH) and, the chemical properties such as calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), nitrates (NO3-), sulfates (SO42-), bicarbonate (HCO3-), phosphates (PO43-), fluoride (F-), and chloride (Cl-) in the groundwater in selected areas in Al-Dhalia district, Al-Dhalia,  governorate were determined by collecting water samples from 16 wells and thereafter the samples were analyzed, in the laboratory of the water resources authority in Aden, according to the recommended methods mentioned in the literature. The analysis results showed that most of the well water is not suitable for drinking due to their contents of some chemical and physical properties were exceeded the maximum permissible limit for WHO (1997) and Yemen ministry of water and environment (YMWE,1999).


Hydrology ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 24 ◽  
Author(s):  
Mustafa Al-Mukhtar ◽  
Fuaad Al-Yaseen

Total dissolved solids (TDS) and electrical conductivity (EC) are important parameters in determining water quality for drinking and agricultural water, since they are directly associated to the concentration of salt in water and, hence, high values of these parameters cause low water quality indices. In addition, they play a significant role in hydrous life, effective water resources management and health studies. Thus, it is of critical importance to identify the optimum modeling method that would be capable to capture the behavior of these parameters. The aim of this study was to assess the ability of using three different models of artificial intelligence techniques: Adaptive neural based fuzzy inference system (ANFIS), artificial neural networks (ANNs) and Multiple Regression Model (MLR) to predict and estimate TDS and EC in Abu-Ziriq marsh south of Iraq. As so, eighty four monthly TDS and EC values collected from 2009 to 2018 were used in the evaluation. The collected data was randomly split into 75% for training and 25% for testing. The most effective input parameters to model TDS and EC were determined based on cross-correlation test. The three performance criteria: correlation coefficient (CC), root mean square error (RMSE) and Nash–Sutcliffe efficiency coefficient (NSE) were used to evaluate the performance of the developed models. It was found that nitrate (NO3), calcium (Ca+2), magnesium (Mg+2), total hardness (T.H), sulfate (SO4) and chloride (Cl−1) are the most influential inputs on TDS. While calcium (Ca+2), magnesium (Mg+2), total hardness (T.H), sulfate (SO4) and chloride (Cl−1) are the most effective on EC. The comparison of the results showed that the three models can satisfactorily estimate the total dissolved solids and electrical conductivity, but ANFIS model outperformed the ANN and MLR models in the three performance criteria: RMSE, CC and NSE during the calibration and validation periods in modeling the two water quality parameters. ANFIS is recommended to be used as a predictive model for TDS and EC in the Iraqi marshes.


2021 ◽  
pp. 0958305X2198988
Author(s):  
Nur Syakirah Rabiha Rosman ◽  
Noor Aniza Harun ◽  
Izwandy Idris ◽  
Wan Iryani Wan Ismail

The emergence of technology to produce nanoparticles (1 nm – 100 nm in size) has drawn significant researchers’ interests. Nanoparticles can boost the antimicrobial, catalytic, optical, and electrical conductivity properties, which cannot be achieved by their corresponding bulk. Among other noble metal nanoparticles, silver nanoparticles (AgNPs) have attained a special emphasis in the industry due to their superior physical, chemical, and biological properties, closely linked to their shapes, sizes, and morphologies. Proper knowledge of these NPs is essential to maximise the potential of biosynthesised AgNPs in various applications while mitigating risks to humans and the environment. This paper aims to critically review the global consumption of AgNPs and compare the AgNPs synthesis between conventional methods (physical and chemical) and current trend method (biological). Related work, advantages, and drawbacks are also highlighted. Pertinently, this review extensively discusses the current application of AgNPs in various fields. Lastly, the challenges and prospects of biosynthesised AgNPs, including application safety, oxidation, and stability, commercialisation, and sustainability of resources towards a green environment, were discussed.


1997 ◽  
Vol 9 (1) ◽  
pp. 43-45 ◽  
Author(s):  
U. Wand ◽  
G. Schwarz ◽  
E. Brüggemann ◽  
K. Bräuer

Lake Untersee is the largest freshwater lake in the interior of East Antarctica. It is a perennially ice-covered, max. 169 m deep, ultra-oligotrophic lake. In contrast to earlier studies, we found clear evidence for physical and chemical stratification in the summer of 1991–92. However, the stratification was restricted to a trough, c. 500 m wide and up to 105 m deep, in the south-western part of the lake. There, the water body was distinctly stratified as indicated by sharp vertical gradients of temperature, pH, dissolved oxygen, and electrical conductivity. The water column was anoxic below 80 m. The chemical stratification is also indicated by changes of ionic ratios. Moreover, there was some evidence for methanogenesis and bacterial sulphate reduction in Lake Untersee.


Sign in / Sign up

Export Citation Format

Share Document