scholarly journals Effect of 1,4-Napthaquinone (NQ) and benzophenone (BPH)on the photodegradation and biodegradation of methyl cellulose film

2010 ◽  
Vol 7 (1) ◽  
pp. 737-744
Author(s):  
Baghdad Science Journal

The induced photodegradation of methyl cellulose (MC) films in air was investigated in the absence and presence of aromatic carbonyl compounds(photosenssitizers): 1,4-naphthaquinone (NQ) and benzophenone (BPH) by accelerated weathering tester. The addition of (0.01 wt %) of low molecular weight aromatic carbonyl compounds to cellulose derivatives films(25µm in thickness) enhanced the photodegradation of the polymer films.The photodegradation rate was measured by the increase in carbonyl absorbance. Decreases in solution viscosity and reduction of molecular weight were also observed in the irradiated samples. Changes in the number-average chain scission, the degree of deterioration and in the quantum yield of chain scission values are also observed, and it was concluded that branching or cross-linking has occurred for cellulose derivative with NQ and BPH. Findings from all analytical techniques indicated that the 1,4-naphthaquinone (NQ) photosensitizer enhance the photodegradation of methyl cellulose more than benzophenone (BPH). The effect of the photosensitizer concentration, (ranging from 0.01 to 0.1 %), on the rate of photodegradation was also monitored for MC films. The rates are increased with increasing the photosensitizer concentration. The effect of film thickness is also studied at fixed sensitizer concentration (0.05%), and results show that the rate of cellulose derivative photodegradation decreases with increasing film thickness. The rate constants of the photodegradation of the photosensitizers deduced in cellulose derivatives films, [at concentration of (0.1%)by weight and thickness (25µm)]. Biodegradation of irradiated cellulose derivatives films was conclusively established with bacteria type Pseudomonas aeuroginosa Rb-19 isolated from crude oil. The amount of bacteria growth on MC after 30 days was lower, while there was no growth observed in MC with BPH

Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2294
Author(s):  
Daniela M. Correia ◽  
Erlantz Lizundia ◽  
Rafaela M. Meira ◽  
Mikel Rincón-Iglesias ◽  
Senentxu Lanceros-Méndez

This study reports a versatile method for the development of cellulose nanocrystals (CNCs) and water-soluble cellulose derivatives (methyl cellulose (MC), hydroxypropyl cellulose (HPC), and sodium carboxymethyl cellulose (NaCMC)) films comprising the ionic liquid (IL) 2-hydroxy-ethyl-trimethylammonium dihydrogen phosphate ([Ch][DHP]) for actuator fabrication. The influence of the IL content on the morphology and physico–chemical properties of free-standing composite films was evaluated. Independently of the cellulose derivative, the ductility of the films increases upon [Ch][DHP] incorporation to yield elongation at break values of nearly 15%. An increase on the electrical conductivity as a result of the IL incorporation into cellulosic matrices is found. The actuator performance of composites was evaluated, NaCMC/[Ch][DHP] showing the maximum displacement along the x-axis of 9 mm at 8 Vpp. Based on the obtained high electromechanical actuation performance, together with their simple processability and renewable nature, the materials fabricated here represent a step forward in the development of sustainable soft actuators of high practical relevance.


2019 ◽  
Author(s):  
Swaraj Sengupta ◽  
Sahanwaj Khan ◽  
Shyamal K. Chattopadhyay ◽  
Indrani Banerjee ◽  
Tarun K. Panda ◽  
...  

Synthesis and characterisation of one trinuclear copper complex, ([Cu<sub>3</sub>L<sub>3</sub>O]ClO<sub>4</sub>) (<b>1</b>) and one nickel complex ([Ni(L'H)<sub>2</sub>(dmso)<sub>2</sub>](ClO<sub>4</sub>)<sub>2</sub>) (<b>2</b>) with Schiff base ligands: (3Z)-3-((Z)-(1-(thiophen-2-yl)ethylidene)hydrazono)butan-2-one oxime (LH) and 1-(pyridin-2-yl)ethylidene)hydrazono)butan-2-one oxime (L<sup>'</sup>H). <b>1</b> shows high catecholase activity and has also been tested as a catalyst for the synthesis of benzylimine. <b>2 </b> shows phenoxazinone synthase activity.


1968 ◽  
Vol 90 (23) ◽  
pp. 6453-6457 ◽  
Author(s):  
C. C. Greig ◽  
Colin D. Johnson

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2373
Author(s):  
Celine Moreira ◽  
Richard Lloyd ◽  
Gavin Hill ◽  
Florence Huynh ◽  
Ana Trufasila ◽  
...  

Polyethylene films are one of the most frequently used packaging materials in our society, due to their combination of strength and flexibility. An unintended consequence of this high use has been the ever-increasing accumulation of polyethylene films in the natural environment. Previous attempts to understand their deterioration have either focused on their durability using polymer analysis; or they have focused on changes occurring during outdoor exposure. Herein, this study combines those strategies into one, by studying the chemical and physical changes in the polyethylene structure in a laboratory using molecular weight and IR spectroscopic mapping analysis, combined with temperate UV-accelerated weathering cycles. This approach has been correlated to real-world outdoor exposure timeframes by parallel testing of the sample polyethylene films in Florida and France. The formation of polyethylene microparticles or polyethylene waxes is elucidated through comparison of drop point testing and molecular weight analysis.


Sign in / Sign up

Export Citation Format

Share Document