scholarly journals Evaluation of bread wheat Triticum aestivum L. callus genotypes for water stress tolerance using Polyethylene Glycol (PEG)

2012 ◽  
Vol 9 (3) ◽  
pp. 391-396
Author(s):  
Baghdad Science Journal

A fixed callus weight of 150 mg was induced from immature embryos of three bread wheat Triticum aestivum L. genotypes (Tamos 2, El-izz and Mutant 1) cultured on nutrient medium {MS) containing Polyethylene glycol (PEG-6000) supplemented with concentrations (0.0, 3.0, 6.0, 9.0 or 12.0%) to evaluate their tolerance to water stress. Cultures were incubated in darkness at temperature of 25?1 ?C. Callus fresh and dry weights were recorded and soluble Carbohydrate and the amino acid Proline concentrations were determined. Results showed that there were significant differences in studied parameters among bread wheat genotypes of which Tamos 2 was higher in callus average fresh and dry weights which gave 353.33 and 38.46 mg/cultured tube respectively. Tamos 2 was also higher in soluble Carbohydrate and Proline concentrations which gave 189.84 and 12.30 mg/g respectively. Results also showed that there was significant reduction in callus average fresh and dry weights and soluble Carbohydrates concentration as concentrations of PEG increased in cultured medium, whereas average Proline concentration increased as PEG concentrations increased. The results also revealed significant interactions among the genotypes and PEG concentrations in all studied parameters. It can be concluded thatTamos 2 genotype showed better tolerance to drought than the other two genotypes

Genome ◽  
1997 ◽  
Vol 40 (4) ◽  
pp. 566-569 ◽  
Author(s):  
Adam J. Lukaszewski

To test the usefulness of breakage–fusion–bridge (BFB) cycles in generating new chromosome aberrations in bread wheat (Triticum aestivum L.) and to extend the range of aberrations available, a series of midget chromosomes was produced from the long arm of chromosome 1B. Using a reverse tandem duplication initiated chromatid type BFB cycle, the 1BL arm was broken and fused with centromeres of either chromosome 5BL or 1RS to form dicentric chromosomes. The 1R and 5B centromeres were broken by centric misdivision. Among the progenies of plants with dicentric chromosomes, two classes of monocentric chromosomes were selected: deficient chromosomes 1B and chromosomes that had 1RS or 5BL for one arm and various fragments of 1BL for the other arm. Following centric misdivision of these monocentrics, midget chromosomes 1BL were isolated: deficient and deletion telocentrics and telocentrics derived from interstitial regions of 1BL. By chance, one deficient chromosome 1BS and one deletion chromosome 1BS were identified in unrelated lines of the same wheat. Following centric misdivision of these chromosomes, two midget chromosomes covering the whole of 1BS were added to the set.Key words: breakage–fusion–bridge cycle, centric misdivision, chromosome aberrations.


2021 ◽  
Vol 923 (1) ◽  
pp. 012089
Author(s):  
Al-Burki Fouad Razzaq A. ◽  
Mohsin Haider Abdulhussein ◽  
Sarheed Abdullah F.

Abstract A field experiment was carried out in Samawa desert (70 km west of Samawa city, Al-Muthanna governorate), during the 2018-2019 and 2019-2020 agricultural seasons, to study the response of three Iraqi cultivars of wheat (Tamooz2, Ibaa99, Abu Ghraib3) to three planting dates (November 15, 1st December and December 15) under Samawa desert conditions. The results showed the superiority of Tamooz2 cultivar in all traits of the yield components, it gave the highest averages of grain yield, which amounted 5.75 and 5.89 tons/ha−1, weight of 1000 grains, which amounted 29.79 and 31.06 gm, and the number of grains per spike, which amounted 73.02 and 73.76 for the 2019 and 2019-2020 seasons, respectively. The date of December 15th also surpassed in the traits of grain yield, weight of 1000 grains, number of spike grains, and the highest grain yield reached 5.62 and 5.58 tons/ha−1 for the two seasons 2018-2019 and 2019-2020, respectively, and the combination (Tamooz 2 x December 15) gave superiority over the other combinations in terms of grain yield which amounted 6.05 tons ha−1 (2018-2019 season) and Ibaa99 × December 1 gave the highest grian yield about 6.10 tons ha-1 (2019-2020 season).


2012 ◽  
Vol 6 (2) ◽  
pp. 46-51
Author(s):  
Abd A. S. ◽  
Aljibouri A. A. M. ◽  
Mahmoud S. N. ◽  
Duha M. Mejeed ◽  
Al-Hussini Z. A.

he effect of five levels of sodium chloride (0.0, 0.5, 1.0, 1.5, 2) % on callus initiated from immature embryos of three genotypes of Triticum aestivum L. (I.E.Tamose 2, Rabeia, genotype 20) were investigated. Callus fresh and dry weight, cell contents of proline, carbohydrate as well as Na, Cl, K and Ca ions were used as parameters to determine the effect of NaCl on callus culture. The results showed Significant differences between genotypes in the most parameters studies significant reduction in callus fresh and dry weight as well as callus content of K, Ca ions and carbohydrate with NaCl concentration increased in the medium . On the other hand proline concentration Na and Cl ions were significant increased with NaCl concentration increased in the culture medium. Significant interactions were recorded between genotypes and salt concentration in their parameters.


Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1127
Author(s):  
Nazir Ahmed ◽  
Mingyuan Zhu ◽  
Qiuxia Li ◽  
Xilei Wang ◽  
Jiachi Wan ◽  
...  

Droughts represent one of the main challenges that climate change imposes on crop production. As a globally cultivated staple crop, wheat (Triticum aestivum L.) is prone to drought environments. Therefore, improvement in drought tolerance represents a growing concern to ensure food security, especially for wheat. In this perspective, the application of Phyto-phillic exogenous materials such as glycine-betaine (GB) has been attracting attention, particularly in stress-related studies. Since roots procure the water and nutrients for plants, any improvements in their response and capacity against drought stress could induce stress tolerance in plants. However, the knowledge about the changes in root architecture, defense mechanism, hormonal metabolism, and downstream signaling, in response to GB-mediated root priming, is still limited. Therefore, we designed the present study to investigate the role of GB-mediated root priming in improving the water stress tolerance in wheat (cv. Jimai-22) under in-vitro conditions. The roots of twelve days old wheat seedlings were treated with Hoagland’s solution (GB-0), 50 mM GB (GB-1), and 100 mM GB (GB-2) for 48 h and subjected to well-watered (WW) and water-stress (WS) conditions. The osmotic stress substantially impaired shoot/root growth, dry matter accumulation, and increased malondialdehyde (MDA) and hydrogen-peroxide (H2O2) production in the roots of wheat seedlings. However, GB-mediated root priming improved the redox homeostasis of wheat roots by boosting the activities of SOD and POD and triggering the significantly higher accumulation of abscisic acid (ABA) and salicylic acid (SA) in the roots of GB-primed plants. Consequently, it modified the root architecture system and improved plant growth, dry matter accumulation, and water-stress tolerance of wheat seedlings. Moreover, GB-mediated root priming increased root sensitivity to water stress and induced overexpression of stress-responsive genes involved in ABA metabolism (TaNECD1, TaABA’OH2), their downstream signal transduction (TaPP2C, TaSNRK2.8), and activation of different transcriptional factors (TabZIP60, TaAREB3, TaWRKY2, TaERF3, and TaMYB3) that are associated with plant metabolite accumulation and detoxification of ROS under water stress conditions. Overall, our results demonstrated that GB-priming improved the physiological and biochemical attributes of wheat plants under WS conditions by improving the drought perception capacity of wheat roots, ultimately enhancing the water stress tolerance. Thus, the GB-priming of roots could help to enhance the water-stress tolerance of economically important crops (i.e., wheat).


Sign in / Sign up

Export Citation Format

Share Document