scholarly journals Study Of Factors Affecting The Thermal Conductivity Of Iraqi Bentonite

2012 ◽  
Vol 9 (3) ◽  
pp. 548-553
Author(s):  
Baghdad Science Journal

Thermal conductivity of compacted bentonite is one of the most important properties where this type of clay is proposed for use as a buffer material. In this study, Lee's disc method was used to measure the thermal conductivity of compacted bentonite specimens. The experimental results have been analyzed to observe the three major factors affecting the thermal conductivity of bentonite buffer material. While the clay density reaches to a target value, the measurement is taken to evaluate the thermal conductivity. By repeating this procedure, a relationship between clay dry density and thermal conductivity has been established in specimens after adjusting the water contents of the bentonite by placing its specimens in a drying oven for different periods. So relationships of thermal conductivity with each of these major factors (clay density, water content, and sand volume fraction) are established in this study. The relevance of these relationships be analyzed together using experimental data on many compacted bentonites.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yong-Gui Chen ◽  
Xue-Min Liu ◽  
Xiang Mu ◽  
Wei-Min Ye ◽  
Yu-Jun Cui ◽  
...  

In China, Gaomiaozi (GMZ) bentonite serves as a feasible buffer material in the high-level radioactive waste (HLW) repository, while its thermal conductivity is seen as a crucial parameter for the safety running of the HLW disposal. Due to the tremendous amount of heat released by such waste, the thermal conductivity of the buffer material is a crucial parameter for the safety running of the high-level radioactive waste disposal. For the purpose of improving its thermal conductivity, this research used the graphene oxide (GO) to modify the pure bentonite and then the nanocarbon-based bentonite (GO-GMZ) was obtained chemically. The thermal conductivity of this modified soil has been measured and investigated under various conditions in this study: the GO content, dry density, and water content. Researches confirm that the thermal conductivity of the modified bentonite is codetermined by the three conditions mentioned above, namely, the value of GO content, dry density, and water content. Besides, the study proposes an improved geometric mean model based on the special condition to predict the thermal conductivity of the compacted specimen; moreover, the calculated values are also compared with the experimental data.


2020 ◽  
Vol 2 (3) ◽  
pp. 108-114
Author(s):  
Amin Moslemi Petrudi ◽  
Ionut Cristian Scurtu

Optimization is to find the best answer among existing situations. Optimization is used in the design and maintenance of many engineering systems to minimize costs or maximize profits. Due to the widespread use of optimization in engineering, this topic has grown a lot. In this paper, the optimization of multi-objective of Water Hybrid Nanofluid/Carbon Nanotubes is investigated. Multi-Objective Particle Swarm Optimization (MOPSO) algorithm has been used in order to maximize thermal conductivity and minimum viscosity by changing the temperature (300 to 340 ºk) and the volume fraction (0.01 to 0.4%) of nanofluid. Artificial Neural Network (ANN) modeling of experimental data has been used to obtain the values. Parto fronts, the optimal points and different values are 20 members and 15 iterations, and in order to compare the results optimization process on the first, fifth, tenth fronts, a relation has been proposed to predict the viscosity and Parto fronts in the optimization process. The aim of the study was to optimize nanofluid to reduce viscosity and increase thermal conductivity.


Author(s):  
Shun Kimura ◽  
Hideharu Takahashi ◽  
Ari Hamdani ◽  
Masanori Aritomi ◽  
Susumu Ozaki ◽  
...  

Compacted bentonite materials are often considered as a buffer material in the geological radioactive waste disposal. This bentonite is expected to fill up the space between the waste and the surrounding ground by swelling. Therefore, understanding the surrounding ground, i.e., groundwater behavior in bentonite, as a buffer material, is essential in order to evaluate the bentonite buffer performance and guarantee long-term safety. The monitoring system of the water saturation level in compacted bentonite is required because water content in buffer material may influence its elastic properties. In this study, the correlation between water content and elasticity in unsaturated compressed bentonite was experimentally evaluated. The evaluation was done by measuring the sound velocity of both longitudinal wave and transverse wave. As a result, it can be confirmed that ultrasonic velocities could evaluate a degree of saturation and bulk modulus of compacted bentonite.


2017 ◽  
Vol 52 (15) ◽  
pp. 2047-2053 ◽  
Author(s):  
Yong-Jun Kim ◽  
Yu-Fei Tan ◽  
Sok Kim

Polymer composites filled with thermally conductive particles are widely used in thermo-electronic industry, and the prediction of effective properties is still important for design and use of composites. Thus, we propose a lattice Boltzmann model to predict the effective thermal conductivity of composites filled with carbon black. First, a method for reconstructing numerical material having filler distribution characteristic similar to that of actual material is introduced, and the process for obtaining the phase function and the volume fraction of grain filler is described. The energy transport governing equation is then solved through the two-dimensional discrete structure by using a lattice Boltzmann model. The effective thermal conductivity of two-phase composite is expressed by the conductivity of each phase and the temperature distribution in discrete rectangle. The resultant prediction is compared with theoretical and experimental data and indicates good agreement with experimental data.


1997 ◽  
Vol 506 ◽  
Author(s):  
Mamoru Nakajima ◽  
Tamotsu Kozaki ◽  
Hiroyasu Kato ◽  
Seichi Sato ◽  
Hiroshi Ohashi

ABSTRACTCompacted bentonite is a candidate buffer material in geological disposal of high-level radioactive waste. The transport of radionuclides in compacted bentonite is dominated by diffusion, because of its very low permeability. In this study, we focused on the grain size of clay mineral, which is considered to be closely related to the formation factor in the pore water diffusion model[1,2]. The apparent diffusion coefficients (Da) of HTO and cesium ions in compacted clays were determined using montmorillonite samples with different grain size and dry density, and the effect of the grain size on diffusion behavior was discussed.


2014 ◽  
Vol 400 (1) ◽  
pp. 521-529 ◽  
Author(s):  
Kazuto Namiki ◽  
Hidekazu Asano ◽  
Shinichi Takahashi ◽  
Tomoyuki Shimura ◽  
Ken Hirota

2020 ◽  
Vol 195 ◽  
pp. 04010
Author(s):  
María Victoria Villar ◽  
Carlos Gutiérrez-Álvarez ◽  
Pedro Luis Martín

The study of the hydro-mechanical properties of compacted bentonite is relevant in the context of deep geological radioactive waste repositories, where bentonite will be used as buffer material between the waste canisters and the host rock and will be subjected to high temperatures and hydraulic gradients. This research aimed at determining the water retention curves of bentonite compacted at a repository-significant dry density (1.6 g/cm3) and at high temperatures (up to 100°C). This had been previously undertaken, but below suctions around 10 MPa the accurateness of the curves obtained was very low because of the methods and instruments used to determine them. To overcome this uncertainty, thermocouple psychrometers, which work properly in the low-suction range (below ~6 MPa), were tested. However, calibration showed that their performance was compromised when temperature rose above 60°C. Nevertheless, the results obtained were consistent with previous ones and allowed to confirm the decrease of water retention capacity with temperature. Additionally, it was checked that this decrease was more important for the low suctions.


Sign in / Sign up

Export Citation Format

Share Document