Volcanisme triasique calco-alcalin a shoshonitique du Nevada occidental

2001 ◽  
Vol 172 (2) ◽  
pp. 189-200 ◽  
Author(s):  
Olivier Blein ◽  
Henriette Lapierre ◽  
Richard A. Schweickert ◽  
Arnaud Pecher ◽  
Cedric Reynaud

Abstract Two types of island-arc occur in the North American Cordillera during the Permian-Triassic times. The first type is exposed in the eastern Klamath and Blue Mountains (fig. 1). Its stratigraphy is continuous from Permian to Triassic, and is composed of arc-tholeiites with minor calc-alkaline lavas. This suite shows high epsilon Nd (sub (T)) values similar to the range of intra-oceanic island-arc [Lapierre et al., 1987; Brouxel et al., 1987, 1988; Charvet et al., 1990; Lapierre et al., 1990, 1994]. In contrast, the second type, exposed in northern Sierra Nevada and central-western Nevada (Black Dyke) (fig. 1), is characterized by an early Permian calc-alkaline suite, with positive to negative epsilon Nd (sub (T)) values. Its basement is inferred to present continental affinities [Rouer et Lapierre, 1989; Rouer et al., 1989; Blein et al., 1996, 2000]. In western Nevada, volcanic rocks of early Triassic age are present in few localities: (1) the Triassic Koipato Group in central Nevada (fig. 1); (2) the Pablo Formation in the Shoshone mountains and the Paradise Range (figs. 1 and 2); and (3) the Garfield Flat formation in the Excelsior mountains (figs. 1 and 2). Silberling [1959] has subdivided the Pablo formation into three members: clastic, limestone, and greenstone (fig. 3). The clastic member consists of andesites, interbedded with volcaniclastic turbidites. The contact between the clastic and the limestone members is gradational and interlensing. The limestones are locally bioclastic with shell fragments, indicating a shallow-water deposition. They yielded a reworked late Permian fauna which suggests a late Permian or younger age. The clastic and limestone members could represent the recurrent rapid deposition in a shallow marine basin of volcanic flows, reworked material from a nearby terrane of volcanic, granitic, and sedimentary rocks. The greenstone member is composed of andesites, volcanic breccias and tuffs. The middle Triassic Granstville formation rests conformably on the Pablo formation. Both formations are affected by Mesozoic polyphase deformations [Oldow, 1985]. The Permian and/or Triassic Garfield Flat formation is composed of ignimbrites and pyroclastic breccia interlayered with conglomerates, sandstones, calcareous and red pelites (fig. 4). The Jurassic-Triassic Gabbs-Sunrise formation rests unconformably on the Garfield Flat formation. Both formations are affected by Mesozoic polyphase deformations [Oldow, 1985]. In the Pablo formation, lavas are shoshonitic basalts and calc-alkaline andesites, while calc-alkaline andesites and rhyolites predominate in the Garfield Flat formation. Basalts and andesites exhibit enriched LREE patterns (fig. 6) with slight negative anomalies in TiO 2 , Nb and Ta typical of subducted-related magmas in the primitive mantle-normalized spidergrams (fig. 7). The lavas show epsilon Sr (sub (T)) and epsilon Nd (sub (T)) values which range between -0.4 to +19.6, and -1.4 to +0.8 respectively (fig. 8). Most of the samples are displaced from the mantle array toward higher epsilon Sr (sub (T)) values, due to the alteration. The epsilon Nd (sub (T)) values, close to the Bulk Earth composition, record an interaction between material from a juvenile pole (mantle or young crust) and from an old crust. The Pablo and Garfield Flat formations differ from the Permian Black Dyke formation. This latter is characterized by calc-alkaline basalts and mafic andesites enriched in LREE, and a mantle source contaminated by subducted sediments or arc-basement [Blein et al., 2000]. The Pablo and Garfield Flat formations show many similarities with the Koipato Group. In central Nevada, the Koipato Group is a sequence of andesites, dacites and rhyolites interbedded with tuffs and volcaniclastic sediments. It rests with a marked angular unconformity on folded Upper Paleozoic oceanic rocks [Silberling and Roberts, 1962]. Fission-track dating on zircon [McKee and Burke, 1972] indicate an age of 225+ or -30 Ma for the Koipato Group. Ammonites, near the top, are considered to be upper early Triassic [Silberling, 1973]. The Pablo and Garfield Flat lavas share in common with the Koipato Group: (1) late Permian to middle Triassic ages; (2) abundant andesites and rhyolites with minor basalts, associated with felsic pyroclastic breccias; (3) LILE and LREE enrichement; (4) low epsilon Nd (sub (T)) values suggesting a juvenile source with slight contamination by a crustal component; (5) La/Nb ratios close to the lower limit of orogenic andesites [Gill, 1981]; and (6) high Nb/Zr ratios suggesting a generation far from a subduction zone [Thieblemont and Tegyey, 1994]. This Triassic high-K calc-alkaline to shoshonitic magmatism is enriched in K, Rb, Th, Nb and Ta relative to the calc-alkaline Black Dyke lavas, and is mainly juvenile judging from Nd isotopic ratios. The source may correspond either to a juvenile crust composed of high-K andesites [Roberts and Clemens, 1993], which could be the Black Dyke lavas, or to phlogopite-K-richterite enriched lithospheric mantle. In both cases, the generation of the high-K calc-alkaline magmatism needs the former existence of an important subduction phase to generate its source. The lavas of the Pablo and Garfield Flat formations are similar to calc-alkaline and shoshonitic lavas emitted in post-collisional setting. Post-collisional arc/continent magmatism is varied from intermediate to felsic, calc-alkaline to shoshonitic, low to high-K and meta-aluminous to hyper-aluminous. The studied lavas may be compared to the arc/passive margin collision of Papua-New Guinea, where a post-collisional magmatism characterized by high-K basalts, andesites and shoshonites [McKenzie, 1976]. In Nevada, this post-collisional event develops after the accretion of the Permian Black Dyke island-arc (Type 2), and before the accretion of the intra-oceanic Permo-Triassic arc (Type 1).

Author(s):  
Minh Pham ◽  
Hieu ◽  
Kenta Kawaguchi ◽  
Anh ◽  
Phuc

together with abundant Permian-Triassic magmatic rocks. This magmatic complex provides important information to reconstruct the tectonic evolution of the Indochina block and surrounding areas. The Cha Val plutonic rocks mainly comprise diorite, quartz diorite, and granodiorite. Geochemically, they are metaluminous with low A/CNK (0.49 to 1.16 with an average of 0.85), medium to high K, low to medium SiO2, and Na2O/K2O>1. Trace and rare earth element compositions display enrichment in Cs, U, Pb, and Nd, but depletion in Ba, Nb, Ta, P, Eu, and Ti, similar to those of continental arc-related magmas. Rock-forming minerals of the Cha Val plutonic rocks are characterized by abundant hornblende. All observed petrographical and geochemical characteristics suggest that the Cha Val plutonic rocks are typical for I-type affinity generated from a subduction regime. LA-ICP-MS U-Pb zircon analyses of three representative samples yielded their crystallization ages between 258.0 Ma and 248.9 Ma, temporally coeval with Late Permian-Early Triassic magmatism previously reported in the Truong Son belt. The (87Sr/86Sr)i ratios (0.7081 to 0.7244), negative whole-rock εNd(t) values (-4.5 to -2.9), zircon εHf(t) values (-1.04 to 2.71), and whole-rock Nd and zircon Hf model ages (TDM2) (1394 Ma to 1111 Ma) indicate that the Cha Val plutonic rocks are derived from melting of Mesoproterozoic crustal materials with a minor contribution of mantle-derived melt. Together with other Permian-Triassic magmatic complexes along the Song Ma suture zone and the Truong Son Belt, the Cha Val plutonic rocks are a representative of magmatism associated with the subduction-collision that amalgamated the South China and Indochina blocks after the closure of a branch of Paleo-Tethys along the Song Ma suture zone during the Late Permian-Early Triassic Indosinian orogeny.


2017 ◽  
Vol 34 (1) ◽  
pp. 45 ◽  
Author(s):  
Elizard González-Becuar ◽  
Efrén Pérez-Segura ◽  
Ricardo Vega-Granillo ◽  
Luigi Solari ◽  
Carlos Manuel González-León ◽  
...  

Plutonic rocks of the Puerta del Sol area, in central Sonora, represent the extension to the south of the El Jaralito batholith, and are part of the footwall of the Sierra Mazatán metamorphic core complex, whose low-angle detachment fault bounds the outcrops of plutonic rocks to the west. Plutons in the area record the magmatic evolution of the Laramide arc and the Oligo-Miocene syn-extensional plutonism in Sonora. The basement of the area is composed by the ca. 1.68 Ga El Palofierral orthogneiss that is part of the Caborca block. The Laramide plutons include the El Gato diorite (71.29 ± 0.45 Ma, U-Pb), the El Pajarito granite (67.9 ± 0.43 Ma, U-Pb), and the Puerta del Sol granodiorite (49.1 ± 0.46 Ma, U-Pb). The younger El Oquimonis granite (41.78 ± 0.32 Ma, U-Pb) is considered part of the scarce magmatism that in Sonora records a transition to the Sierra Madre Occidental magmatic event. The syn-extensional plutons are the El Garambullo gabbro (19.83 ± 0.18 Ma, U-Pb) and the Las Mayitas granodiorite (19.2 ± 1.2 Ma, K-Ar). A migmatitic event that affected the El Palofierral orthogneiss, El Gato diorite, and El Pajarito granite between ca. 68 and 59 Ma might be related to the emplacement of the El Pajarito granite. The plutons are metaluminous to slightly peraluminous, with the exception of El Oquimonis granite, which is a peraluminous two-mica, garnet-bearing granite. They are mostly high-K calc-alkaline with nearly uniform chondrite-normalized REE and primitive-mantle normalized multielemental patterns that are characteristic of continental margin arcs and resemble patterns reported for other Laramide granites of Sonora. The Laramide and syn-extensional plutons also have Sr, Nd and Pb isotopic ratios that plot within the fields reported for Laramide granites emplaced in the Caborca terrane in northwestern and central Sonora. Nevertheless, and despite their geochemical affinity to continental magmatic arcs, the El Garambullo gabbro and Las Mayitas granodiorite are syn-extensional plutons that were emplaced at ca. 20 Ma during development of the Sierra Mazatán metamorphic core complex. The 40Ar/39Ar and K-Ar ages obtained for the El Palofierral orthogneiss, the Puerta del Sol granodiorite, the El Oquimonis granite, and the El Garambullo gabbro range from 26.3 ± 0.6 to 17.4 ± 1.0 Ma and are considered cooling ages associated with the exhumation of the metamorphic core complex.


Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 799
Author(s):  
Chao Zhang ◽  
Franz Neubauer ◽  
Zheng-Hong Liu ◽  
Fang-Hua Cui ◽  
Qing-Bin Guan

This paper reports new zircon LA–ICP–MS U–Pb and Hf isotope data, and whole-rock major and trace element data for Late Permian to Early Triassic intrusive rocks in the Yanbian area, NE China. These data provide new insights into the timing of the final subduction of the Paleo-Asian Ocean beneath the North China Craton. The zircon U–Pb age data indicate that a suite of Late Permian to Early Triassic intrusive rocks related to subduction is present within the Yanbian area. The Late Permian intrusive rocks consist of diorites while the Early Triassic granites and hornblende gabbros constitute a geochemically bimodal igneous rock association. Furthermore, the Early Triassic granites show the geochemical characteristics of shoshonitic rocks. All the rocks are characterized by enrichment in LILEs and LREEs, and depletion in HREEs and HFSEs, suggesting they formed in a subduction setting. Zircons from the Early Triassic gabbros have εHf(t) values and TDM2 ages of +7.6 to +10.7 and 735–1022 Ma, respectively, suggesting that they formed from a primary magma generated by the partial melting of lithospheric mantle material that had been previously modified by subduction-related fluids. The Late Permian diorites have εHf(t) values and TDM2 ages of +0.5 to +9.5 and 853 to 1669 Ma, respectively, while they have high contents of Al2O3, Fe2O3, and low contents of SiO2, Cr, and Ni, indicating Late Permian diorites should derive from the mantle and are influenced by some crustal material. Early Triassic granitic rocks have a wide range of εHf(t) values and TDM2 ages of −4.8 to +9.4 and 852 to 2136 Ma, respectively. Their zircons imply that the Early Triassic granites could be mainly derived from partial melting of the crust, with minor contribution of the crustal material of an ancient crust. The Early Triassic bimodal intrusive rocks in Yanbian area, combined with the regional geologic information; therefore, record a final post-subduction extensional environment due to the break-off of the previously subducted slab.


2008 ◽  
Vol 145 (4) ◽  
pp. 463-474 ◽  
Author(s):  
SHEN LIU ◽  
RUI-ZHONG HU ◽  
CAI-XIA FENG ◽  
HAI-BO ZOU ◽  
CAI LI ◽  
...  

AbstractGeochemical and Sr–Nd–Pb isotopic data are presented for volcanic rocks from Zougouyouchaco (30.5 Ma) and Dogai Coring (39.7 Ma) of the southern and middle Qiangtang block in northern Tibet. The volcanic rocks are high-K calc-alkaline trachyandesites and dacites, with SiO2 contents ranging from 58.5 to 67.1 wt % The rocks are enriched in light REE (LREE) and contain high Sr (649 to 986 ppm) and relatively low Yb (0.8 to 1.2 ppm) and Y (9.5 to 16.6 ppm) contents, resulting in high La/Yb (29–58) and Sr/Y (43–92) ratios, as well as relatively high MgO contents and Mg no., similar to the compositions of adakites formed by slab melting in subduction zones. However, the adakitic rocks in the Qiangtang block are characterized by relatively low εNd(t) values (−3.8 to −5.0) and highly radiogenic Sr ((87Sr/86Sr)i=0.706–0.708), which are inconsistent with an origin by slab melting. The geochemistry and tectonics indicate that the adakitic volcanic rocks were most likely derived from partial melting of delaminated lower continental crust. As the pristine adakitic melts rose, they interacted with the surrounding mantle peridotite, elevating their MgO values and Mg numbers.


Paleobiology ◽  
2015 ◽  
Vol 42 (1) ◽  
pp. 127-142 ◽  
Author(s):  
Ellen K. Schaal ◽  
Matthew E. Clapham ◽  
Brianna L. Rego ◽  
Steve C. Wang ◽  
Jonathan L. Payne

AbstractThe small size of Early Triassic marine organisms has important implications for the ecological and environmental pressures operating during and after the end-Permian mass extinction. However, this “Lilliput Effect” has only been documented quantitatively in a few invertebrate clades. Moreover, the discovery of Early Triassic gastropod specimens larger than any previously known has called the extent and duration of the Early Triassic size reduction into question. Here, we document and compare Permian-Triassic body size trends globally in eight marine clades (gastropods, bivalves, calcitic and phosphatic brachiopods, ammonoids, ostracods, conodonts, and foraminiferans). Our database contains maximum size measurements for 11,224 specimens and 2,743 species spanning the Late Permian through the Middle to Late Triassic. The Permian/Triassic boundary (PTB) shows more size reduction among species than any other interval. For most higher taxa, maximum and median size among species decreased dramatically from the latest Permian (Changhsingian) to the earliest Triassic (Induan), and then increased during Olenekian (late Early Triassic) and Anisian (early Middle Triassic) time. During the Induan, the only higher taxon much larger than its long-term mean size was the ammonoids; they increased significantly in median size across the PTB, a response perhaps related to their comparatively rapid diversity recovery after the end-Permian extinction. The loss of large species in multiple clades across the PTB resulted from both selective extinction of larger species and evolution of surviving lineages toward smaller sizes. The within-lineage component of size decrease suggests that only part of the size decrease can be related to the end-Permian kill mechanism; in addition, Early Triassic environmental conditions or ecological pressures must have continued to favor small body size as well. After the end-Permian extinction, size decrease occurred across ecologically and physiologically disparate clades, but this size reduction was limited to the first part of the Early Triassic (Induan). Nektonic habitat or physiological buffering capacity may explain the contrast of Early Triassic size increase and diversification in ammonoids versus size reduction and slow recovery in benthic clades.


2012 ◽  
Vol 149 (5) ◽  
pp. 892-908 ◽  
Author(s):  
JIN-YANG ZHANG ◽  
CHANG-QIAN MA ◽  
FU-HAO XIONG ◽  
BIN LIU

AbstractNumerous calc-alkaline granitoid intrusions in the eastern Kunlun Orogen provide a valuable opportunity to constrain the evolution of the orogen. The age and genesis of these intrusions, however, remain poorly understood. The granitoid intrusions near the Balong region, eastern Kunlun Orogen, consist of granodiorite, diorite and syenogranite. The granodiorite contains crystallized segregations, abundant mafic microgranular enclaves (MMEs) and small quartz diorite stocks. In situ zircon U–Pb dating reveals that the granodiorites and quartz diorites were emplaced between 263 and 241 Ma, whereas the syenogranite was produced at c. 231 Ma. The granodiorite and quartz diorite have a calc-alkaline affinity and are metaluminous and Na-rich, with slightly enriched Sr–Nd isotope compositions. The granodiorite is characterized by fractionated REE patterns, whereas the quartz diorite displays a relatively flat REE pattern. The MMEs are consistent with the granodiorite in terms of incompatible elements and Sr–Nd isotope composition. Compared to the granodiorite and diorite, the syenogranite has higher SiO2, K, Rb, Th and Sr contents and a lower Rb/Sr ratio. The results presented here, when combined with regional geological data, indicate that the granodiorite and quartz diorite were derived from dehydration melting of mafic lower crustal rocks during the N-directed subduction of the Anyemaqen ocean lithosphere in Late Permian–Middle Triassic times, whereas the syenogranite was produced at a higher crustal level in a syn-collisional setting compared to the granodiorite.


2021 ◽  
Author(s):  
Cemre Ay ◽  
Gürsel Sunal ◽  
Aral I. Okay

<p>Upper Cretaceous arc-related volcanic and volcanoclastic units overlying the Paleozoic sedimentary rocks of the Istanbul Zone are a key unit related to the opening of the Black Sea as a back-arc basin. They formed as a result of north dipping subduction of the Neo-Tethys Ocean beneath Laurasia. We studied the Upper Cretaceous volcanic units north of Istanbul along several stratigraphic sections, and present new geochemical data from the volcanic rocks in order to understand Cretaceous geodynamic evolution of the İstanbul Zone.</p><p>The Upper Cretaceous  volcanic units north of Istanbul are divided into two formations. At the base there is a fore-arc turbidite succession,the İshaklı Formation, which is made up of volcaniclastic sandstone, shale, marl, tuff, debris flow horizons and epiclastic rocks of Turonian age. The İshaklı Formation is conformably overlain by the volcanoclastics,  tuffs, andesite and basalt lavas and agglomerates- the Riva Formation, which represents the arc/ intra-arc series.</p><p>Geochemically, basalts and basaltic andesites of the Riva Formation are low K calc-alkaline to medium-high K calc-alkaline and with magnesium numbers ranging from 32.6% to 51.5% Primitive mantle normalized spider diagram of trace elements show  enrichment in LILE elements (K, Rb, Sr, Cs, Ba, Th and U) and depletion in HFS elements ( Nb,Ta and Ti) . The high ratio of LILE/ HFS and negative Nb-Ta anomalies indicate that the volcanism evolved in subduction setting. Chondirite-normalized REE pattern display slight negative Eu anomalies and the La/Yb ratios of the samples range between 2,76 and 4,89. Our new geochemical, stratigraphical and the regional geological data suggest that north of Istanbul there was a transition from fore-arc deposition to arc volcanism during the Late Cretaceous opening of the Western Black Sea.  Considering the whole Pontide – Sredna-Gora Upper Cretaceous magmatic arc, it can be stated that calc-alkaline volcanism developed in relation to northward subduction of the Neo-Tethys oceanic lithosphere during the Turonian, and may have passed into high-K calc alkaline and shoshonitic magmatism as a result of the progressive extentional tectonism during the Campanian.</p>


1989 ◽  
Vol 26 (12) ◽  
pp. 2465-2478 ◽  
Author(s):  
O. Rouer ◽  
H. Lapierre ◽  
C. Coulon ◽  
A. Michard

The mid-Paleozoic volcanics of northern Sierra Nevada consist of the Sierra Buttes rhyolites, the Taylor basalts and andesites, and the Keddie Ridge basalt–latite–rhyolite suite. The Sierra Buttes calc-alkaline rhyolites display strong light rare-earth element enrichment and negative εNd values. The Taylor basalts and andesites in the northern Hough and Genesee blocks exhibit calc-alkaline affinities (REE rare-earth element patterns highly enriched in LREE), whereas in the southern Hough block they are tholeiitic (flat rare-earth element patterns). The abundance of silicic lavas, the low εNd values of both the Sierra Buttes and Taylor volcanics and the δ18O values of the Sierra Buttes rhyolite and Bowman Lake trondjhemite provide evidence that the northern Sierra Nevada island arc was continent based. The Keddie Ridge differentiated volcanics, characterized by high Zr, Y, Nb, K, and light rare-earth elements, are geochemically similar to a shoshonite suite. Their eruption at the end of the mid-Paleozoic volcanic episode suggests a reversal of subduction, uplift, and block faulting in the island arc.The mid-Paleozoic volcanics of the northern Sierra Nevada are thought to represent the remnant of a mature island arc because calc-alkaline rocks predominate over tholeiitic ones, the lavas display a K enrichment with time, and the volcanics are evolved in their isotopes, compared with rocks erupted in young or primitive island arcs.


Sign in / Sign up

Export Citation Format

Share Document