Petrogenesis and tectonic significance of the Late Permian–Middle Triassic calc-alkaline granites in the Balong region, eastern Kunlun Orogen, China

2012 ◽  
Vol 149 (5) ◽  
pp. 892-908 ◽  
Author(s):  
JIN-YANG ZHANG ◽  
CHANG-QIAN MA ◽  
FU-HAO XIONG ◽  
BIN LIU

AbstractNumerous calc-alkaline granitoid intrusions in the eastern Kunlun Orogen provide a valuable opportunity to constrain the evolution of the orogen. The age and genesis of these intrusions, however, remain poorly understood. The granitoid intrusions near the Balong region, eastern Kunlun Orogen, consist of granodiorite, diorite and syenogranite. The granodiorite contains crystallized segregations, abundant mafic microgranular enclaves (MMEs) and small quartz diorite stocks. In situ zircon U–Pb dating reveals that the granodiorites and quartz diorites were emplaced between 263 and 241 Ma, whereas the syenogranite was produced at c. 231 Ma. The granodiorite and quartz diorite have a calc-alkaline affinity and are metaluminous and Na-rich, with slightly enriched Sr–Nd isotope compositions. The granodiorite is characterized by fractionated REE patterns, whereas the quartz diorite displays a relatively flat REE pattern. The MMEs are consistent with the granodiorite in terms of incompatible elements and Sr–Nd isotope composition. Compared to the granodiorite and diorite, the syenogranite has higher SiO2, K, Rb, Th and Sr contents and a lower Rb/Sr ratio. The results presented here, when combined with regional geological data, indicate that the granodiorite and quartz diorite were derived from dehydration melting of mafic lower crustal rocks during the N-directed subduction of the Anyemaqen ocean lithosphere in Late Permian–Middle Triassic times, whereas the syenogranite was produced at a higher crustal level in a syn-collisional setting compared to the granodiorite.

2015 ◽  
Vol 152 (6) ◽  
pp. 1073-1084 ◽  
Author(s):  
J. GREGORY SHELLNUTT ◽  
TUNG-YI LEE ◽  
CHIH-CHENG YANG ◽  
SHIN-TAI HU ◽  
JONG-CHANG WU ◽  
...  

AbstractThe Doba gabbro was collected from an exploration well through the Cretaceous Doba basin of southern Chad. The gabbro is composed mostly of plagioclase, clinopyroxene and Fe–Ti oxide minerals and displays cumulus mineral textures. Whole-rock40Ar–39Ar step-heating geochronology yielded a Late Permian plateau age of 257 ± 1 Ma. The major and trace elemental geochemistry shows that the gabbro is tholeiitic in composition and has trace element ratios (i.e. La/YbN> 7; Sm/YbPM> 3.4; Nb/Y > 1; Zr/Y > 5) indicative of a basaltic melt derived from a garnet-bearing mantle source. The moderately enriched Sr–Nd isotopes (i.e. ISr= 0.70495 to 0.70839; ɛNd(T)= −1.0 to −1.3) fall within the mantle array (i.e. OIB-like) and are similar to other Late Permian plutonic rocks of North-Central Africa (i.e. ISr= 0.7040 to 0.7070). The enriched isotopic composition of the Doba gabbro contrasts with the more depleted compositions of the spatially associated Neoproterozoic post-Pan-African within-plate granites. The contrasting Nd isotope composition between the older within-plate granites and the younger Doba gabbro indicates that different mantle sources produced the rocks and thus may mark the southern boundary of the Saharan Metacraton.


2001 ◽  
Vol 172 (3) ◽  
pp. 333-342 ◽  
Author(s):  
Mireille Polve ◽  
Rene C. Maury ◽  
Philippe Vidal ◽  
Bambang Priadi ◽  
Herve Bellon ◽  
...  

Abstract Acidic potassic calc-alkaline (CAK) magmas have been emplaced in the central part of the western arm of Sulawesi from 6.5 to 0.6 Ma, mostly as peraluminous dacites, rhyolites and granites. They overlay or crosscut a high-grade metamorphic basement including lower crustal garnet peridotites and granulites, the latter showing evidences for incipient melting during rapid uplift. Major and trace element data coupled with a Sr, Nd and Pb isotopic study of the CAK magmas and their lower crustal basement rocks demonstrate that they share a number of common features, including radiogenic Sr and Pb and unradiogenic Nd signatures, consistent with those of Australian granulites and Indian Ocean sediments. We propose that the CAK magmas derived from the anatexis of lower crustal rocks of Australian origin (the Banggai-Sula microcontinent) during the phase of uplift which followed their collision with the Sundaland margin (the western arm of Sulawesi) during the Middle Miocene, and possibly the breakoff of the subducted Molucca Sea slab.


2001 ◽  
Vol 172 (2) ◽  
pp. 189-200 ◽  
Author(s):  
Olivier Blein ◽  
Henriette Lapierre ◽  
Richard A. Schweickert ◽  
Arnaud Pecher ◽  
Cedric Reynaud

Abstract Two types of island-arc occur in the North American Cordillera during the Permian-Triassic times. The first type is exposed in the eastern Klamath and Blue Mountains (fig. 1). Its stratigraphy is continuous from Permian to Triassic, and is composed of arc-tholeiites with minor calc-alkaline lavas. This suite shows high epsilon Nd (sub (T)) values similar to the range of intra-oceanic island-arc [Lapierre et al., 1987; Brouxel et al., 1987, 1988; Charvet et al., 1990; Lapierre et al., 1990, 1994]. In contrast, the second type, exposed in northern Sierra Nevada and central-western Nevada (Black Dyke) (fig. 1), is characterized by an early Permian calc-alkaline suite, with positive to negative epsilon Nd (sub (T)) values. Its basement is inferred to present continental affinities [Rouer et Lapierre, 1989; Rouer et al., 1989; Blein et al., 1996, 2000]. In western Nevada, volcanic rocks of early Triassic age are present in few localities: (1) the Triassic Koipato Group in central Nevada (fig. 1); (2) the Pablo Formation in the Shoshone mountains and the Paradise Range (figs. 1 and 2); and (3) the Garfield Flat formation in the Excelsior mountains (figs. 1 and 2). Silberling [1959] has subdivided the Pablo formation into three members: clastic, limestone, and greenstone (fig. 3). The clastic member consists of andesites, interbedded with volcaniclastic turbidites. The contact between the clastic and the limestone members is gradational and interlensing. The limestones are locally bioclastic with shell fragments, indicating a shallow-water deposition. They yielded a reworked late Permian fauna which suggests a late Permian or younger age. The clastic and limestone members could represent the recurrent rapid deposition in a shallow marine basin of volcanic flows, reworked material from a nearby terrane of volcanic, granitic, and sedimentary rocks. The greenstone member is composed of andesites, volcanic breccias and tuffs. The middle Triassic Granstville formation rests conformably on the Pablo formation. Both formations are affected by Mesozoic polyphase deformations [Oldow, 1985]. The Permian and/or Triassic Garfield Flat formation is composed of ignimbrites and pyroclastic breccia interlayered with conglomerates, sandstones, calcareous and red pelites (fig. 4). The Jurassic-Triassic Gabbs-Sunrise formation rests unconformably on the Garfield Flat formation. Both formations are affected by Mesozoic polyphase deformations [Oldow, 1985]. In the Pablo formation, lavas are shoshonitic basalts and calc-alkaline andesites, while calc-alkaline andesites and rhyolites predominate in the Garfield Flat formation. Basalts and andesites exhibit enriched LREE patterns (fig. 6) with slight negative anomalies in TiO 2 , Nb and Ta typical of subducted-related magmas in the primitive mantle-normalized spidergrams (fig. 7). The lavas show epsilon Sr (sub (T)) and epsilon Nd (sub (T)) values which range between -0.4 to +19.6, and -1.4 to +0.8 respectively (fig. 8). Most of the samples are displaced from the mantle array toward higher epsilon Sr (sub (T)) values, due to the alteration. The epsilon Nd (sub (T)) values, close to the Bulk Earth composition, record an interaction between material from a juvenile pole (mantle or young crust) and from an old crust. The Pablo and Garfield Flat formations differ from the Permian Black Dyke formation. This latter is characterized by calc-alkaline basalts and mafic andesites enriched in LREE, and a mantle source contaminated by subducted sediments or arc-basement [Blein et al., 2000]. The Pablo and Garfield Flat formations show many similarities with the Koipato Group. In central Nevada, the Koipato Group is a sequence of andesites, dacites and rhyolites interbedded with tuffs and volcaniclastic sediments. It rests with a marked angular unconformity on folded Upper Paleozoic oceanic rocks [Silberling and Roberts, 1962]. Fission-track dating on zircon [McKee and Burke, 1972] indicate an age of 225+ or -30 Ma for the Koipato Group. Ammonites, near the top, are considered to be upper early Triassic [Silberling, 1973]. The Pablo and Garfield Flat lavas share in common with the Koipato Group: (1) late Permian to middle Triassic ages; (2) abundant andesites and rhyolites with minor basalts, associated with felsic pyroclastic breccias; (3) LILE and LREE enrichement; (4) low epsilon Nd (sub (T)) values suggesting a juvenile source with slight contamination by a crustal component; (5) La/Nb ratios close to the lower limit of orogenic andesites [Gill, 1981]; and (6) high Nb/Zr ratios suggesting a generation far from a subduction zone [Thieblemont and Tegyey, 1994]. This Triassic high-K calc-alkaline to shoshonitic magmatism is enriched in K, Rb, Th, Nb and Ta relative to the calc-alkaline Black Dyke lavas, and is mainly juvenile judging from Nd isotopic ratios. The source may correspond either to a juvenile crust composed of high-K andesites [Roberts and Clemens, 1993], which could be the Black Dyke lavas, or to phlogopite-K-richterite enriched lithospheric mantle. In both cases, the generation of the high-K calc-alkaline magmatism needs the former existence of an important subduction phase to generate its source. The lavas of the Pablo and Garfield Flat formations are similar to calc-alkaline and shoshonitic lavas emitted in post-collisional setting. Post-collisional arc/continent magmatism is varied from intermediate to felsic, calc-alkaline to shoshonitic, low to high-K and meta-aluminous to hyper-aluminous. The studied lavas may be compared to the arc/passive margin collision of Papua-New Guinea, where a post-collisional magmatism characterized by high-K basalts, andesites and shoshonites [McKenzie, 1976]. In Nevada, this post-collisional event develops after the accretion of the Permian Black Dyke island-arc (Type 2), and before the accretion of the intra-oceanic Permo-Triassic arc (Type 1).


2011 ◽  
Vol 149 (5) ◽  
pp. 753-767 ◽  
Author(s):  
QING-DONG ZENG ◽  
JIN-HUI YANG ◽  
JIAN-MING LIU ◽  
SHAO-XIONG CHU ◽  
XIAO-XIA DUAN ◽  
...  

AbstractThe Chehugou granite-hosted molybdenum deposit is typical of the Xilamulun metallogenic belt, which is an important Mo–Ag–Pb–Zn producer in China. A combination of major and trace element, Sr and Nd isotope, and zircon U–Pb isotopic data are reported for the Chehugou batholith to constrain its petrogenesis and Mo mineralization. The zircon SIMS U–Pb dating yields mean ages of 384.7 ± 4.0 Ma and 373.1 ± 5.9 Ma for monzogranite and syenogranite and 265.6 ± 3.5 Ma and 245.1 ± 4.4 Ma for syenogranite porphyry and granite porphyry, respectively. The Devonian granites are calc-alkaline with K2O/Na2O ratios of 0.44–0.52, the Permian granites are alkali-calcic with K2O/Na2O ratios of 1.13–1.25, and the Triassic granites are calc-alkaline and alkali-calcic rocks with K2O/Na2O ratios of 0.78–1.63. They are all enriched in large-ion lithophile elements (LILEs) and depleted in high-field-strength elements (HFSEs) with negative Nb and Ta anomalies in primitive mantle-normalized trace element diagrams. They have relatively high Sr (189–1256 ppm) and low Y (3.87–5.43 ppm) concentrations. The Devonian granites have relatively high initial Sr isotope ratios of 0.7100–0.7126, negative ɛNd(t) values of −12.3 to −12.4 and 206Pb/204Pb ratios of 16.46–17.50. In contrast, the Permian and Triassic granitoids have relatively low initial 87Sr/86Sr ratios (0.7048–0.7074), negative ɛNd(t) values of −10.1 to −13.1 and 206Pb/204Pb ratios of 17.23–17.51. These geochemical features suggest that the Devonian, Permian and Triassic Chehugou granitoids were derived from ancient, garnet-bearing crustal rocks related to subduction of the Palaeo-Asian Ocean and subsequent continent–continent collision between the North China and Siberian plates.


2020 ◽  
Vol 157 (12) ◽  
pp. 2081-2088
Author(s):  
Sergey B Felitsyn ◽  
Eugeny S. Bogomolov

AbstractAn enhanced concentration of phosphorus has been found at the stratigraphic level of the disappearance of Ediacaran taxa in two areas, the Cis-Dniester region and the Moscow syneclise, on the East European Platform (EEP). The isotope composition of neodymium was determined in Fe sulphide and phosphorite in the same beds. Measured εNd(t) values in diagenetic phosphate nodules are similar to those in iron sulphide from the same layer. During the Ediacaran − Early Cambrian, accumulation of radiogenic Nd in the epeiric basins on the EEP increased progressively from −17.9 and −19.4 in pyrite from the sequence bottom to −7.9 and −8.5 in the Early Cambrian pyrite of the central part of the EEP. The Ediacaran phosphate nodules show εNd(t) ranging from −12.9 to −15.0, while that in the Early Cambrian nodules is typically c. −9.0. These data indicate the secular change in Nd isotope composition of the water reservoir on the EEP from Ediacaran to Cambrian.


2019 ◽  
Vol 503 ◽  
pp. 40-51 ◽  
Author(s):  
Michal Jakubowicz ◽  
Jolanta Dopieralska ◽  
Andrzej Kaim ◽  
Petr Skupien ◽  
Steffen Kiel ◽  
...  

1993 ◽  
Vol 130 (6) ◽  
pp. 835-846 ◽  
Author(s):  
S. R. Noble ◽  
R. D. Tucker ◽  
T. C. Pharaoh

AbstractThe U-Pb isotope ages and Nd isotope characteristics of asuite of igneous rocks from the basement of eastern England show that Ordovician calc-alkaline igneous rocks are tectonically interleaved with late Precambrian volcanic rocks distinct from Precambrian rocks exposed in southern Britain. New U-Pb ages for the North Creake tuff (zircon, 449±13 Ma), Moorby Microgranite (zircon, 457 ± 20 Ma), and the Nuneaton lamprophyre (zircon and baddeleyite, 442 ± 3 Ma) confirm the presence ofan Ordovician magmatic arc. Tectonically interleaved Precambrian volcanic rocks within this arc are verified by new U-Pb zircon ages for tuffs at Glinton (612 ± 21 Ma) and Orton (616 ± 6 Ma). Initial εNd values for these basement rocks range from +4 to - 6, consistent with generation of both c. 615 Ma and c. 450 Ma groups of rocksin continental arc settings. The U-Pb and Sm-Nd isotope data support arguments for an Ordovician fold/thrust belt extending from England to Belgium, and that the Ordovician calc-alkaline rocks formed in response to subductionof Tornquist Sea oceanic crust beneath Avalonia.


Sign in / Sign up

Export Citation Format

Share Document