Landslide Interpretation of the Northeast Flank of Kohala Volcano, Hawaii

2018 ◽  
Vol 24 (2) ◽  
pp. 187-205
Author(s):  
Kim M. Bishop

Abstract The Hawaiian Island volcanic edifices have shed at least 15 giant submarine landslides, each classified as either a slump or debris avalanche. Controversy exists regarding the number, size, and type of landslides on the northeast flank of Kohala Volcano. This study provides a new interpretation for the Kohala flank based on contour and balanced cross-section analysis. Specifically, contours indicate that there is a landslide extending from the summit to the coast between Pololu and Waipio Valleys. The contour evidence also shows that the slide plane is planar and dips less steeply than the topographic slope. Balanced cross sections show the slide plane to be approximately 950 m deep immediately downhill from the zone of depletion, and the slide plane presumably reaches the surface at the base of the coastal cliffs on the northeast coast of Kohala mountain. The lower part of the landslide once extended from the coast to approximately 10 km offshore, but this portion now has been completely removed, apparently as a debris avalanche. Removal of this distal landslide mass created a 200 to 450 m headwall that is now topographically represented by sea cliffs. This newly identified slide/debris avalanche is informally named the “Kohala landslide.” Based on cross-cutting relations of landslide faults with Hawi series lava flows, the upper slide part of the landslide moved sometime between 270 and 60 ka. The age of the lower, debris avalanche part is even less certain and depends on whether canyons cut in the seafloor after the avalanche movement were eroded in the subaerial or submarine environment.


2017 ◽  
Author(s):  
Yuichi S. Hayakawa ◽  
Hidetsugu Yoshida ◽  
Hiroyuki Obanawa ◽  
Ryutaro Naruhashi ◽  
Koji Okumura ◽  
...  

Abstract. Debris avalanche caused by the sector collapse of a volcanic mountain often forms characteristic depositional landforms including hummocks. Not only sedimentological but also geomorphological analyses of debris avalanche deposits (DAD) are crucial to clarify the size, mechanisms, and processes of the debris avalanche. We investigate the morphology of hummocks newly identified in the DAD at the north-eastern flank of Mt. Erciyes in Kayseri, central Turkey, likely formed in the late Pleistocene. Using a remotely piloted aircraft system (RPAS) and the structure-from-motion multi-view stereo photogrammetry (SfM), we obtained high-definition digital elevation model (DEM) and orthorectified image of the DAD surface with hummocks. Detailed geometric features of the hummocks are investigated using the RPAS-derived high-definition DEM. The source volume of the DAD was also estimated by reconstructing the original shape of the mountain body using a lower-resolution satellite-based DEM. For this, topographic cross sections are examined based on the slopes around the scar that are regarded as the remnant topography preserved since the sector collapse. The spatial distribution of hummocks shows an unusual pattern regarding the distance-size relationships, i.e., anomalously concentrated in a certain distance from the source. The hummocks are found to be aligned toward the flow direction of the debris avalanche, suggesting the extensional regime of the debris avalanche. These facts indicate that this debris avalanche did not follow the typical flow type of debris avalanches observed in the other cases. Instead, the topographic constraints by former caldera wall and fault-induced lineaments could have strongly affected the flow course and pattern in this particular case: The pre-existing caldera wall topography could have acted as the topographic barriers for the debris avalanche to force the initial flow to turn northward, and the flow regime to be once compressional followed by extensional at the narrow and steepened outlet valley. Also, the estimated volume of the DAD 12–15 × 108 m3 gives its mean thickness of 60–75 m, which is much deeper than the reported cases of other DADs. This suggests that the debris avalanche could have flown down to the far downstream areas from the presently-observed limit of the DAD extent. Assessments of the DAD including the results of this study can provide further insights into the risk and mitigation of potential disasters in the study area.



Landslides ◽  
2020 ◽  
Vol 17 (9) ◽  
pp. 2217-2229
Author(s):  
Yu Zhuang ◽  
Yueping Yin ◽  
Aiguo Xing ◽  
Kaiping Jin


2009 ◽  
Vol 68 (2) ◽  
pp. 201-213 ◽  
Author(s):  
Richard H. Guthrie ◽  
Stephen G. Evans ◽  
Sandra G. Catane ◽  
Mark A. H. Zarco ◽  
Ricarido M. Saturay


2018 ◽  
Vol 18 (2) ◽  
pp. 429-444 ◽  
Author(s):  
Yuichi S. Hayakawa ◽  
Hidetsugu Yoshida ◽  
Hiroyuki Obanawa ◽  
Ryutaro Naruhashi ◽  
Koji Okumura ◽  
...  

Abstract. Debris avalanches caused by volcano sector collapse often form characteristic depositional landforms such as hummocks. Sedimentological and geomorphological analyses of debris avalanche deposits (DADs) are crucial to clarify the size, mechanisms, and emplacement of debris avalanches. We describe the morphology of hummocks on the northeastern flank of Mt. Erciyes in Kayseri, central Turkey, likely formed in the late Pleistocene. Using a remotely piloted aircraft system (RPAS) and the structure-from-motion and multi-view stereo (SfM–MVS) photogrammetry, we obtained high-definition digital elevation model (DEM) and orthorectified images of the hummocks to investigate their geometric features. We estimated the source volume of the DAD by reconstructing the topography of the volcano edifice using a satellite-based DEM. We examined the topographic cross sections based on the slopes around the scar regarded as remnant topography. Spatial distribution of hummocks is anomalously concentrated at a certain distance from the source, unlike those that follow the distance–size relationship. The high-definition land surface data by RPAS and SfM revealed that many of the hummocks are aligned toward the flow direction of the debris avalanche, suggesting that the extensional regime of the debris avalanche was dominant. However, some displaced hummocks were also found, indicating that the compressional regime of the flow contributed to the formation of hummocks. These indicate that the flow and emplacement of the avalanche were constrained by the topography. The existing caldera wall forced the initial eastward flow to move northward, and the north-side caldera wall forced the flow into the narrow and steepened outlet valley where the sliding debris underwent a compressional regime, and out into the unconfined terrain where the debris was most likely emplaced on an extensional regime. Also, the estimated volume of 12–15 × 108 m3 gives a mean thickness of 60–75 m, which is much deeper than the reported cases of other DADs. This suggests that the debris avalanche must have flowed further downstream and beyond the current DAD extent. Assessments of the DAD incorporating the topographic constraints can provide further insights into the risk and mitigation of potential disasters in the study area.



Author(s):  
Rudolf Vukelic

The term landslide or, less frequently, landslip, refers to several forms of mass wasting that include a wide range of ground movements, such as rock falls, deep-seated slope failures, mudflows and debris flows. Landslides occur in a variety of environments, characterized by either steep or gentle slope gradients: from mountain ranges to coastal cliffs or even underwater, in which case they are called submarine landslides. Gravity is the primary driving force for a landslide to occur, but there are other factors affecting slope stability which produce specific conditions that make a slope prone to failure. In many cases, the landslide is triggered by a specific event (such as a heavy rainfall, an earthquake, a slope cut to build a road, and many others), although this is not always identifiable.



Author(s):  
Stig A. Schack Pedersen ◽  
Peter Gravesen

Glaciodynamic sequence stratigraphy provides a practical model for grouping and classifying complex geological data to aid interpretation of past climatic and environmental development in Quaternary successions. The principles of glaciodynamic sequence stratigraphy are applied here to summarise the complex glacial geological framework of Hvideklint on the island of Møn, south-east Denmark. The framework of the superimposed deformed Hvideklint is presented in a reconstructed geological cross-section of Hvideklint. For the construction of the architecture of the glaciotectonic complex, the interpretation of structures below sea level was based on a detailed new survey of the cliff section combined with construction of successive approximation balanced cross-sections. The new description is supported by drill hole data from the Jupiter database. Where chalk is not glaciotectonically deformed, the constructed depth to the top-chalk-surface is generally located about 30 m below sea level. In Hvideklint, thrust sheets with chalk are exposed 20 m above sea level, and the balanced cross-section constructions indicate that the décollement surface for a Hvideklint glaciotectonic complex is located about 80 m below sea level. Between the décollement level and the top of the complex, two or more thrust-fault flat-levels and connecting ramps add to the complex architecture of Hvideklint.



GeoArabia ◽  
1997 ◽  
Vol 2 (1) ◽  
pp. 91-110 ◽  
Author(s):  
Samir Yousif ◽  
Ghalib Nouman

ABSTRACT Until the late 1970s only one well penetrated the entire Jurassic section of Kuwait. A few other scattered wells partially penetrated it. During the 1980s an appreciable number of deep wells revealed that the Jurassic sequence is inverted with respect to the Cretaceous sequence and that the main Cretaceous arches were sites of Jurassic sedimentary troughs. This new interpretation marks a revolution in the existing concepts for Jurassic oil exploration in Kuwait. One of the most effective methods for defining of Jurassic structures is the isopach of the Upper Jurassic Gotnia Formation. The main Jurassic reservoirs include the Najmah, Sargelu and Marrat formations which were detected as a result of the exploration activities during the 1980s. Selective stratigraphic and structural cross-sections reveal the stratigraphic relationships of the Jurassic sediments.





2006 ◽  
Vol 6 (1) ◽  
pp. 63-88 ◽  
Author(s):  
H. G. Greene ◽  
L. Y. Murai ◽  
P. Watts ◽  
N. A. Maher ◽  
M. A. Fisher ◽  
...  

Abstract. Recent investigations using the Monterey Bay Aquarium Research Institutes (MBARI) Remotely Operated Vehicles (ROVs) "Ventana" and "Tiburon" and interpretation of MBARI's EM 300 30 kHz multibeam bathymetric data show that the northern flank of the Santa Barbara Basin has experienced massive slope failures. Of particular concern is the large (130 km2) Goleta landslide complex located off Coal Oil Point near the town of Goleta, that measures 14.6-km long extending from a depth of 90 m to nearly 574 m deep and is 10.5 km wide. We estimate that approximately 1.75 km3 has been displaced by this slide during the Holocene. This feature is a complex compound submarine landslide that contains both surfical slump blocks and mud flows in three distinct segments. Each segment is composed of a distinct head scarp, down-dropped head block and a slide debris lobe. The debris lobes exhibit hummocky topography in the central areas that appear to result from compression during down slope movement. The toes of the western and eastern lobes are well defined in the multibeam image, whereas the toe of the central lobe is less distinct. Continuous seismic reflection profiles show that many buried slide debris lobes exist and comparison of the deformed reflectors with ODP Drill Site 149, Hole 893 suggest that at least 200 000 years of failure have occurred in the area (Fisher et al., 2005a). Based on our interpretation of the multibeam bathymetry and seismic reflection profiles we modeled the potential tsunami that may have been produced from one of the three surfical lobes of the Goleta slide. This model shows that a 10 m high wave could have run ashore along the cliffs of the Goleta shoreline. Several other smaller (2 km2 and 4 km2) slides are located on the northern flank of the Santa Barbara Basin, both to the west and east of Goleta slide and on the Conception fan along the western flank of the basin. One slide, named the Gaviota slide, is 3.8 km2, 2.6 km long and 1.7 km wide. A distinct narrow scar extends from near the eastern head wall of this slide for over 2km eastward toward the Goleta slide and may represent either an incipient failure or a remnant of a previous failure. Push cores collected within the main head scar of this slide consisted of hydrogen sulfide bearing mud, possibly suggesting active fluid seepage and a vibra-core penetrated ~50 cm of recent sediment overlying colluvium or landslide debris confirming the age of ~300 years as proposed by Lee et al. (2004). However, no seeps or indications of recent movement were observed during our ROV investigation within this narrow head scar indicating that seafloor in the scar is draped with mud.



Sign in / Sign up

Export Citation Format

Share Document