scholarly journals Development of High Sensitive On-Line Laser Ionization Mass Spectrometer for Environmental Hazardous Organic Compounds

2008 ◽  
Vol 57 (4) ◽  
pp. 227-237 ◽  
Author(s):  
Shun-ichi Hayashi ◽  
Tetsuya Suzuki ◽  
Shun-ichi Ishiuchi ◽  
Masaaki Fujii
2019 ◽  
Vol 12 (3) ◽  
pp. 1861-1870 ◽  
Author(s):  
Alexander Zaytsev ◽  
Martin Breitenlechner ◽  
Abigail R. Koss ◽  
Christopher Y. Lim ◽  
James C. Rowe ◽  
...  

Abstract. Chemical ionization mass spectrometry (CIMS) instruments routinely detect hundreds of oxidized organic compounds in the atmosphere. A major limitation of these instruments is the uncertainty in their sensitivity to many of the detected ions. We describe the development of a new high-resolution time-of-flight chemical ionization mass spectrometer that operates in one of two ionization modes: using either ammonium ion ligand-switching reactions such as for NH4+ CIMS or proton transfer reactions such as for proton-transfer-reaction mass spectrometer (PTR-MS). Switching between the modes can be done within 2 min. The NH4+ CIMS mode of the new instrument has sensitivities of up to 67 000 dcps ppbv−1 (duty-cycle-corrected ion counts per second per part per billion by volume) and detection limits between 1 and 60 pptv at 2σ for a 1 s integration time for numerous oxygenated volatile organic compounds. We present a mass spectrometric voltage scanning procedure based on collision-induced dissociation that allows us to determine the stability of ammonium-organic ions detected by the NH4+ CIMS instrument. Using this procedure, we can effectively constrain the sensitivity of the ammonia chemical ionization mass spectrometer to a wide range of detected oxidized volatile organic compounds for which no calibration standards exist. We demonstrate the application of this procedure by quantifying the composition of secondary organic aerosols in a series of laboratory experiments.


2020 ◽  
Author(s):  
Dianne Sanchez ◽  
Roger Seco ◽  
Dasa Gu ◽  
Alex Guenther ◽  
John Mak ◽  
...  

Abstract. We report OH reactivity observations by a chemical ionization mass spectrometer – comparative reactivity method (CIMS-CRM) instrument in a suburban forest of the Seoul Metropolitan Area (SMA) during Korea US Air Quality Study (KORUS-AQ 2016) from mid-May to mid-June of 2016. A comprehensive observational suite was deployed to quantify reactive trace gases inside of the forest canopy including a high-resolution proton transfer reaction time of flight mass spectrometer (PTR-ToF-MS). An average OH reactivity of 30.7 ± 5.1 s−1 was observed, while the OH reactivity calculated from CO, NO + NO2 (NOx), ozone (O3), sulfur dioxide (SO2), and 14 volatile organic compounds (VOCs) was 11.8 ± 1.0 s−1. An analysis of 346 peaks from the PTR-ToF-MS accounted for an additional 6.0 ± 2.2 s−1 of the total measured OH reactivity, leaving 42.0 % missing OH reactivity. The missing OH reactivity most likely comes from VOC oxidation products of both biogenic and anthropogenic origin.


2015 ◽  
Vol 15 (14) ◽  
pp. 7765-7776 ◽  
Author(s):  
F. D. Lopez-Hilfiker ◽  
C. Mohr ◽  
M. Ehn ◽  
F. Rubach ◽  
E. Kleist ◽  
...  

Abstract. We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas and particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO–HR-ToF-CIMS are highly correlated with, and explain at least 25–50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.


2020 ◽  
Author(s):  
Chenyang Bi ◽  
Jordan E. Krechmer ◽  
Graham O. Frazier ◽  
Wen Xu ◽  
Andrew T. Lambe ◽  
...  

Abstract. Atmospheric oxidation products of volatile organic compounds consist of thousands of unique chemicals that have distinctly different physical and chemical properties depending on their detailed structures and functional groups. Measurement techniques that can achieve molecular characterizations with details down to functional groups (i.e., isomer-resolved resolution) are consequently necessary to provide understandings of differences of fate and transport within isomers produced in the oxidation process. We demonstrate a new instrument coupling the thermal desorption aerosol gas chromatograph (TAG), which enables the separation of isomers, with the high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS), which has the capability of classifying unknown compounds by their molecular formulas, and the flame ion detector (FID), which provide a near-universal response to organic compounds. The TAG-CIMS/FID is used to provide isomer-resolved measurements of samples from liquid standard injections and particle-phase organics generated in oxidation flow reactors. By coupling a TAG to a CIMS, the CIMS is enhanced with an additional dimension of information (resolution of individual molecules) at the cost of time resolution (i.e., one sample per hour instead of per minute). We found that isomers are prevalent in sample matrix with an average number of three to five isomers per formula depending on the precursors in the oxidation experiments. Additionally, a multi-reagent ionization mode is investigated in which both zero air and iodide are introduced as reagent ions, to examine the feasibility of extending the use of an individual CIMS to a broader range of analytes with still selective reagent ions. While this approach reduces iodide-adduct ions by a factor of two, [M−H]− and [M+O2]− ions produced from lower-polarity compounds increase by a factor of five to ten, improving their detection by CIMS. The method expands the range of detected chemical species by using two chemical ionization reagents simultaneously, enabled by the pre-separation of analyte molecules before ionization.


2015 ◽  
Vol 8 (10) ◽  
pp. 10121-10157 ◽  
Author(s):  
M. J. Kim ◽  
M. C. Zoerb ◽  
N. R. Campbell ◽  
K. J. Zimmermann ◽  
B. W. Blomquist ◽  
...  

Abstract. Benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e. DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt−1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a weaker electric field, demonstrated that ion-molecule reactions likely proceed through a combination of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (< 25 %) was observed for the detection of β-caryophyllene, a bicyclic sesquiterpene. The field stability of benzene cluster cations using CI-ToFMS was examined in the marine boundary layer during the High Wind Gas Exchange Study (HiWinGS). The use of benzene cluster cation chemistry for the selective detection of DMS was validated against an atmospheric pressure ionization mass spectrometer. Measurements from the two instruments were highly correlated (R2=0.80) over a wide range of sampling conditions.


Sign in / Sign up

Export Citation Format

Share Document