Cyclic Gas Injection EOR in Eagle Ford Can Increase Estimated Ultimate Recovery

2021 ◽  
Vol 73 (08) ◽  
pp. 65-66
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 200427, “Evaluation of Eagle Ford Cyclic Gas Injection EOR: Field Results and Economics,” by George Grinestaff, SPE, Chris Barden, and Jeff Miller, SPE, Shale IOR, prepared for the 2020 SPE Improved Oil Recovery Conference, originally scheduled to be held in Tulsa, 18–22 April. The paper has not been peer reviewed. Cyclic-gas-injection-based enhanced oil recovery (CGEOR) in the Eagle Ford was begun in late 2012 by EOG Resources and, at the time of writing, has expanded to more than 30 leases by six operators (266 wells). An extensive EOR evaluation was initiated to analyze the results recorded in these leases. The authors write that CGEOR in Eagle Ford volatile oil can yield substantial increases in estimated ultimate recovery (EUR) with robust economics, depending on compressor use and field life. Introduction Eagle Ford Source Rock and Reservoir. The Eagle Ford shale represents some of the world’s richest source rocks. The Upper Cretaceous seafloor received abundant organic debris and preserved it in an anoxic environment. The low permeability of the shale and limestone helped generate hydrocarbons when pore pressure exceeded overburden pressure. The resulting natural fractures provided a means to expel oil, much of it migrating into the overlying Austin Chalk and Tertiary sandstones. The primary target area for produced-gas injection EOR is currently in the volatile oil window between 9,000 and 11,000 ft true vertical depth, which yields oil API gravity of greater than 40. Initial gas/oil ratio (GOR) typically ranges from 1,000 to 3,000 scf/bbl. Eagle Ford EOR History. The first large-scale CGEOR project was implemented in October 2014. Rapid development has occurred since then, but, in the complete paper, the authors present the first commercial EOR projects by EOG Resources because these have the longest CGEOR production history. Recent projects show more-efficient startup, cycling, and higher optimization of gas injection. Therefore, the analysis of EOR in this paper takes a conservative approach of using the first projects because they appear to have lower EOR recovery but more production history. Evaluation Methodology Unconventional EOR Work Flow. Analysis of CGEOR production and results has been completed using production history and reservoir simulation to provide a rigorous evaluation. The authors use a 14-component fracture element model with a very fine grid to predict well GOR, EUR, and reservoir behavior for the compositional process. The element model is then scaled up to mimic the average well for a given pad or lease, and then cycle operations are developed based on CGEOR simulation runs and criteria. Unconventional CGEOR provides a direct response after the first cycle of gas injection; however, the base depletion profile also is important for understanding economics for increased oil production or incremental EOR. A history match of the base depletion is first completed to match an average well at the pad level (approximately one 640-acre section with 10 to 14 wells). The element is then scaled up based on well completion, stimulated rock volume, and EUR for the base depletion.

2009 ◽  
Vol 12 (02) ◽  
pp. 200-210 ◽  
Author(s):  
Benjamin Ramirez ◽  
Hossein Kazemi ◽  
Mohammed Al-kobaisi ◽  
Erdal Ozkan ◽  
Safian Atan

Summary Accurate calculation of multiphase-fluid transfer between the fracture and matrix in naturally fractured reservoirs is a crucial issue. In this paper, we will present the viability of the use of simple transfer functions to account accurately for fluid exchange resulting from capillary, gravity, and diffusion mass transfer for immiscible flow between fracture and matrix in dual-porosity numerical models. The transfer functions are designed for sugar-cube or match-stick idealizations of matrix blocks. The study relies on numerical experiments involving fine-grid simulation of oil recovery from a typical matrix block by water or gas in an adjacent fracture. The fine-grid results for water/oil and gas/oil systems were compared with results obtained with transfer functions. In both water and gas injection, the simulations emphasize the interaction of capillary and gravity forces to produce oil, depending on the wettability of the matrix. In gas injection, the thermodynamic phase equilibrium, aided by gravity/capillary interaction and, to a lesser extent, by molecular diffusion, is a major contributor to interphase mass transfer. For miscible flow, the fracture/matrix mass transfer is less complicated because there are no capillary forces associated with solvent and oil; nevertheless, gravity contrast between solvent in the fracture and oil in the matrix creates convective mass transfer and drainage of oil. Using the transfer functions presented in this paper, fracture- and matrix-flow calculations can be decoupled and solved sequentially--reducing the complexity of the computation. Furthermore, the transfer-function equations can be used independently to calculate oil recovery from a matrix block.


SPE Journal ◽  
2018 ◽  
Vol 23 (06) ◽  
pp. 2376-2393 ◽  
Author(s):  
Olav Møyner ◽  
Hamdi A. Tchelepi

Summary Compositional simulation is necessary for a wide variety of reservoir-simulation applications, and it is especially valuable for accurate modeling of near-miscible gas injection for enhanced oil recovery. Because the nonlinear behavior of gas injection is sensitive to the resolution of the simulation grid used, it is important to use a fine grid to accurately resolve the compositional and saturation gradients. Compositional simulation of highly detailed reservoir models entails the use of small timesteps and large, poorly conditioned linear systems. The high computational cost of solving such systems renders field-scale simulations practically unfeasible. The coupling of the flow and transport to the phase-equilibrium calculations adds to the challenge. This is especially the case for near-miscible gas injection, in which the phase state and the phase compositions are very strong functions of space and time. We present a multiscale solver for compositional displacements with three-phase fluid flow. The thermodynamic phase behavior is described by general nonlinear cubic equations of state (EOS). The fully implicit (FI) natural-variables formulation is used as the basis to derive a sequential implicit (SI) solution strategy, whereby the pressure field is decoupled from the multicomponent transport. The SI scheme is mass conservative without the need to iterate between the pressure and transport equations during the timestep. This conservation property allows the errors caused by fixing the total-velocity field between the pressure- and transport-updating steps to be represented as a volume error. The method computes approximate pressure solutions—within a prescribed residual tolerance—that yield conservative fluxes on the computational grid of interest (fine, coarse, or intermediate). We use basis functions computed using restricted smoothing to allow for generally unstructured grids. The new method is verified against existing research and commercial compositional simulators using a simple conceptual test case and also using more-complex cases represented on both unstructured and corner-point grids with strong heterogeneity, faults, and pinched-out and eroded cells. The SI method and the implementation described here represent the first demonstrated multiscale method applicable to general compositional problems with complexity relevant for industrial-reservoir simulation.


2021 ◽  
Author(s):  
Marcel J. Bourgeois ◽  
Hocine Berrahmoun ◽  
Maryam Mohamed Al Attar ◽  
Djilali Boulenouar ◽  
Djelloul Hammadi ◽  
...  

Abstract This paper is based on the analysis of miscible WAG for an onshore Middle-East field, with strongly undersaturated light oil. Water Alternate Gas operations have been ongoing for around 5 years, which is relatively recent compared to more than 40 years of production history. Goal of this work was to assess the efficiency of this miscible hydrocarbon WAG and to optimize it on the different compartments, with respect to miscibility, voidage replacement, and recycling. As this is a large mature field, with WAG operations dispatched on around 50 injectors and 9 fault blocks (compartments), the method of analysis had to be robust with respect to the different injection strategies followed in the past. It was essentially based on injection and production data, but also used pressure data when available. We computed the following dimensionless variables: oil recovery factor, BSW, voidage replacement ratio (VRR), and also WAG ratio and gas recycling ratio (GRR). Their evolution versus time was analyzed and compared between fault blocks. Using dimensionless variables allowed to compare fault blocks with different initial volumes in place, and to illustrate trends versus time. It was also found beneficial to lump some compartments, when communication was substantiated by pressure data. On the production side, we used the conventional BSW and GOR variables to quantify the water and gas recycling ratio. On the injection side, we observed that in some compartments, the historical WAG ratio was too low in the oil zone, which could be quantified by excluding the peripheral water injection volumes. The analysis allowed also to estimate the gas utilization factor and efficiency, which confirmed the overall high efficiency of miscible gas injection in 3-phase mode. It was also found that the injected fluid efficiency correlated with geology: gas injection tends to be more efficient in zones with high permeabilities at the bottom (coarsening downwards), while water injection is better adapted to zones with high permeabilities at the top (coarsening upwards). Estimating these water and gas efficiencies also allowed to optimize the injection strategy on a field level, by comparing the water efficiency with other units of the field only under waterflood.


2021 ◽  
Author(s):  
Khaled Enab ◽  
Hamid Emami-Meybodi

Abstract We assess the huff-n-puff performance in ultratight reservoirs (shales) by conducting large-scale numerical simulations for a wide range of reservoir fluid types (retrograde condensate, volatile oil, black oil) and different injection gases (CO2, C2H6, C3H8) by considering relative permeability hysteresis, diffusion, and sorption. A dual-porosity naturally fractured numerical compositional model is used that considers molecular diffusion and sorption to represent the flow mechanisms during the injection process. Killough's method, Langmuir's adsorption model, and Sigmund correlation are utilized to incorporate hysteresis, sorption, and diffusion, respectively. To investigate the impact of the fluid type, we consider three fluid types from Eagle Ford shale representing retrograde condensate, volatile oil, and black oil. We conduct a comprehensive evaluation of the impact of diffusion, sorption, and hysteresis on the production performance and retention of each fluid and injection gas. Eagle Ford formation is selected because it is the most actively developed shale, and it contains a wide span of PVT windows from dry gas to black oil. The simulation results show that the huff-n-puff process improves the oil recovery by 4-6% when 10% PV of gas is injected. The huff-n-puff efficiency increases with reducing gas-oil-ratio (GOR) as oil recovery from low (GOR) reservoirs is doubled, while recovery from retrograde condensate increased by 20%. C2H6 provides the highest recovery for the black and volatile oil, and CO2 provides the highest recovery for retrograde condensate fluid type. Diffusion and sorption are essential mechanisms to be considered when modeling gas injection to any fluid type in shales. However, the relative permeability hysteresis effect is not significant. Neglecting diffusion during the huff-n-puff process underestimates the oil recovery and retention capacity. The diffusion effect on the oil density reduction is observed more during the soaking period. The diffusion impact increases with higher GOR reservoirs, while the sorption impact decreases with higher GOR. The retention capacity of the injected gas decreases with higher GOR. The diffusion impact on the retention capacity increases with higher GOR. Hence sorption and diffusion must be considered when modeling the huff-n-puff process in ultratight reservoirs.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2070
Author(s):  
Xiangwen Kong ◽  
Hongjun Wang ◽  
Wei Yu ◽  
Ping Wang ◽  
Jijun Miao ◽  
...  

Duvernay shale is a world class shale deposit with a total resource of 440 billion barrels oil equivalent in the Western Canada Sedimentary Basin (WCSB). The volatile oil recovery factors achieved from primary production are much lower than those from the gas-condensate window, typically 5–10% of original oil in place (OOIP). The previous study has indicated that huff-n-puff gas injection is one of the most promising enhanced oil recovery (EOR) methods in shale oil reservoirs. In this paper, we built a comprehensive numerical compositional model in combination with the embedded discrete fracture model (EDFM) method to evaluate geological and engineering controls on gas huff-n-puff in Duvernay shale volatile oil reservoirs. Multiple scenarios of compositional simulations of huff-n-puff gas injection for the proposed twelve parameters have been conducted and effects of reservoir, completion and depletion development parameters on huff-n-puff are evaluated. We concluded that fracture conductivity, natural fracture density, period of primary depletion, and natural fracture permeability are the most sensitive parameters for incremental oil recovery from gas huff-n-puff. Low fracture conductivity and a short period of primary depletion could significantly increase the gas usage ratio and result in poor economical efficiency of the gas huff-n-puff process. Sensitivity analysis indicates that due to the increase of the matrix-surface area during gas huff-n-puff process, natural fractures associated with hydraulic fractures are the key controlling factors for gas huff-n-puff in Duvernay shale oil reservoirs. The range for the oil recovery increase over the primary recovery for one gas huff-n-puff cycle (nearly 2300 days of production) in Duvernay shale volatile oil reservoir is between 0.23 and 0.87%. Finally, we proposed screening criteria for gas huff-n-puff potential areas in volatile oil reservoirs from Duvernay shale. This study is highly meaningful and can give valuable reference to practical works conducting the huff-n-puff gas injection in both Duvernay and other shale oil reservoirs.


Author(s):  
Trine S. Mykkeltvedt ◽  
Sarah E. Gasda ◽  
Tor Harald Sandve

AbstractCarbon-neutral oil production is one way to improve the sustainability of petroleum resources. The emissions from produced hydrocarbons can be offset by injecting capture CO$$_{2}$$ 2 from a nearby point source into a saline aquifer for storage or a producing oil reservoir. The latter is referred to as enhanced oil recovery (EOR) and would enhance the economic viability of CO$$_{2}$$ 2 sequestration. The injected CO$$_{2}$$ 2 will interact with the oil and cause it to flow more freely within the reservoir. Consequently, the overall recovery of oil from the reservoir will increase. This enhanced oil recovery (EOR) technique is perceived as the most cost-effective method for disposing captured CO$$_{2}$$ 2 emissions and has been performed for many decades with the focus on oil recovery. The interaction between existing oil and injected CO$$_{2}$$ 2 needs to be fully understood to effectively manage CO$$_{2}$$ 2 migration and storage efficiency. When CO$$_{2}$$ 2 and oil mix in a fully miscible setting, the density can change non-linearly and cause density instabilities. These instabilities involve complex convective-diffusive processes, which are hard to model and simulate. The interactions occur at the sub-centimeter scale, and it is important to understand its implications for the field scale migration of CO$$_{2}$$ 2 and oil. In this work, we simulate gravity effects, namely gravity override and convective mixing, during miscible displacement of CO$$_{2}$$ 2 and oil. The flow behavior due to the competition between viscous and gravity effects is complex, and can only be accurately simulated with a very fine grid. We demonstrate that convection occurs rapidly, and has a strong effect on breakthrough of CO$$_{2}$$ 2 at the outlet. This work for the first time quantifies these effects for a simple system under realistic conditions.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1998
Author(s):  
Haishan Luo ◽  
Kishore K. Mohanty

Unlocking oil from tight reservoirs remains a challenging task, as the existence of fractures and oil-wet rock surfaces tends to make the recovery uneconomic. Injecting a gas in the form of a foam is considered a feasible technique in such reservoirs for providing conformance control and reducing gas-oil interfacial tension (IFT) that allows the injected fluids to enter the rock matrix. This paper presents a modeling strategy that aims to understand the behavior of near-miscible foam injection and to find the optimal strategy to oil recovery depending on the reservoir pressure and gas availability. Corefloods with foam injection following gas injection into a fractured rock were simulated and history matched using a compositional commercial simulator. The simulation results agreed with the experimental data with respect to both oil recovery and pressure gradient during both injection schedules. Additional simulations were carried out by increasing the foam strength and changing the injected gas composition. It was found that increasing foam strength or the proportion of ethane could boost oil production rate significantly. When injected gas gets miscible or near miscible, the foam model would face serious challenges, as gas and oil phases could not be distinguished by the simulator, while they have essentially different effects on the presence and strength of foam in terms of modeling. We provide in-depth thoughts and discussions on potential ways to improve current foam models to account for miscible and near-miscible conditions.


Sign in / Sign up

Export Citation Format

Share Document