Optimal Injection Strategies for the Propagation of Surfactant Mixtures Through Porous Media

1984 ◽  
Vol 24 (05) ◽  
pp. 545-554 ◽  
Author(s):  
Jeffrey H. Harwell ◽  
Robert S. Schechter ◽  
William H. Wade

Abstract The chromatographic movement of surfactant mixtures through porous media is examined to determine possible injection strategies for minimizing the amount of surfactant required in a tertiary oil recovery chemical flood. The model used does not consider the presence of oil but does account for mixed micelle formation. Expressions are derived that represent the surfactant required to expose an entire reservoir to an "effective oil recovery mixture." This effective mixture may be either one whose overall composition is within prescribed limits of the composition of the injected surfactant solution or it may be a mixture whose overall composition varies but which contains micelles of fixed composition. Mixtures considered contain cosolvents and one, two, or three surfactant components. Initial calculations neglect dispersion, but numerical calculations including dispersion leave the conclusion unchanged; within the limitations of the model, there are optimal strategies for the propagation of surfactant mixtures through porous media. The optimal injection strategy varies, depending on the nature of the surfactant solution injected into the porous medium. Conditions for and the location of the optimum are discussed. Conclusions based on observations about these systems then are extended to cover the injection of surfactant mixtures currently available commercially. Introduction Commercial application of surfactants for EOR now appears feasible. The principle at work in such processes is the lowering of interfacial tension (IFT) between the continuous flowing water and trapped residual oil droplets to allow the oil to be mobilized. Mixtures that effectively lower oil/water IFT are often blends of various surfactant types, isomers of the same surfactant, and/or cosurfactants in an electrolyte solution. The oil recovery efficiency of the injected mixture generally is quite sensitive to changes in mixture composition. Change of composition after injection into the reservoir may occur by one or a combination of mechanisms. For example, the mixture components may partition selectively into the various phases present in the reservoir. The mechanism considered here is the chromatographic separation of the mixture into its components due to preferential adsorption of various components onto reservoir minerals-"the chromatographic problem." The recent reports of the Bell Creek Unit A micellar/polymer pilot showed 20% of the injected surfactant produced before any oil bank with negligible concomitant incremental tertiary oil production. Significantly, the surfactants produced were the lower-molecular-weight species. Though alternative mechanisms for this separation yet may be established, the hypothesis of chromatographic separation of the components in the mobile aqueous phase seems adequate. Not only did this produced surfactant not result in enhanced recovery, but since the injected solution was designed to give ultralow IFT's with the low-molecular-weight components in place, it seems likely that the oil recovery efficiency of the remaining surfactant also may have been impaired. These results emphasize the importance of understanding the mechanisms of surfactant chromatographic movement. One means of combatting the chromatographic problem is to reduce the local adsorption of the mixture components-that is, modify the adsorption isotherms of the constituents. This may be done either by changing the reservoir minerals (e.g., by a caustic flood) or by modifying the structure of the surfactant molecules. A complementary approach is to examine the dynamics of the chromatographic movement of surfactant mixtures to identify injection strategies, if they exist, that minimize the total surfactant requirement. It is this question that is considered here. The analysis considers an oil-free linear system and neglects many of the complex features that are encountered in an actual chemical flood. There are several reasons for ignoring these complicating factors. The coherence solutions apply to the systems considered here; whereas the only solutions that include the presence of oil employ numerical computations. An analytical solution is desirable; however, there is an additional more compelling argument that has been used to justify neglecting the presence of oil. The chromatographic movement of a surfactant/ cosurfactant mixture through an oil-free core should demonstrate the qualitative features of the actual oil recovery process. While multiple flowing phases do arise in an actual flood, the released oil forms a bank ahead of the surfactant slug. SPEJ P. 545^

2016 ◽  
Vol 9 (1) ◽  
pp. 29-36
Author(s):  
Chengli Zhang ◽  
Guodong Qu ◽  
Guoqiang Cui ◽  
Mingxing Bai

Enhanced foam flooding is a chemical flooding technology, which is applied to improve the recovery efficiency of oil and gas. The oil displacement agent of enhanced foam flooding is a foam that the polymer and surfactant solution as liquid. In this paper, three-dimensional mathematical model of unsteady flow is established about enhanced foam system in the porous media, and the numerical calculation method is given to study the enhanced foam flooding. The results show that: the unsteady flow of enhanced foam system in porous media exists flow front, the flow foam average density of flow front reach the peak; enhanced foam flooding can form the oil bank in the displacement front and the oil saturation of the oil bank reaches about 0.55, the oil bank can produce effective drive to remain oil and then improve oil recovery.


1969 ◽  
Vol 9 (02) ◽  
pp. 247-254 ◽  
Author(s):  
J.L. Thompson ◽  
N. Mungan

Abstract Laboratory displacement tests were performed to study oil recovery efficiency by gravity drainage in fractured systems under miscible conditions. The porous media used were cylindrical Berea and Blue porous media used were cylindrical Berea and Blue jacket sandstone cores containing a number of well-defined, artificially formed, vertical and subvertical fractures. Butane and Soltrol 130 were the two miscible fluids used. The purpose of the study was to examine the influences of the displacement rate, fracture density, fracture orientation, fracture permeability, matrix permeability, crossflow, core length and connate permeability, crossflow, core length and connate water on the oil recovery. It was found that displacement rate, matrix permeability and the subvertical fractures affected permeability and the subvertical fractures affected oil recovery most. The critical flow rate, based on the matrix permeability, was found to be a significant factor in the process. For displacement rates below the critical flow rate, the oil recovery efficiency appeared to be unaffected by the density of the subvertical fractures. At the high displacement rates, the fracture density becomes important, with the recovery being the most efficient in the core having the greatest number of the subvertical fractures. The magnitude of the fracture permeability, the fracture orientation, the core permeability, the fracture orientation, the core length and the connate water have little effect on the oil recovery efficiency. Introduction Gravity drainage under miscible conditions from relatively thick reservoirs can be a very efficient recovery process, especially at low flow rates where the gravity forces are dominant and, consequently, the adverse viscous fingers associated with the unfavorable viscosity ratio are minimized or eliminated. Such a process might involve injection of an LPG or some solvent bank at the crest and then driving the bank with dry gas. For some favorable combination of reservoir temperature, pressure and oil composition, there may be no need to inject any solvent bank, since enrichment of the dry gas by the light ends of the crude creates an in-situ solvent bank. Slobod and Howlett have studied the effects of gravity segregation in vertical unconsolidated porous media under miscible conditions in the porous media under miscible conditions in the laboratory. The main variables in their study were the viscosity ratio, the density differences and the rate of flow. In this study, the objective was to find the influence of fractures on gravity drainage under miscible conditions. A greater number of related variables were also studied. LABORATORY STUDY CORE DESCRIPTION Displacement tests were performed mostly in cylindrical Berea sandstone cores. In a few cases in which a much lower matrix permeability was desired, Blue jacket sandstone cores were used. The vertical fractures were formed by cutting the cores with a thin circular blade or by parting them along a bedding plane. The vertical fracture plane always contained the axis of the cylindrical core. The subvertical fractures, cut with a saw, were inclined 45 degrees from the horizontal. The line of intersection between the planes of the vertical and subvertical fractures was parallel to the circular faces of the cores in all cases except one, as depicted by VF3HF-2 in Fig. 1. Fracture geometry of the other cores is also given in Fig. 1. Tables 1 and 2 give the physical properties of the solid and fractured cores, respectively. The suffixes and prefixes shown for each core have been used prefixes shown for each core have been used throughout the paper so that the reader may discern the fracture geometry from the core numbers. SPEJ P. 247


1966 ◽  
Vol 6 (01) ◽  
pp. 17-25 ◽  
Author(s):  
S.S. Marsden ◽  
Suhail A. Khan

Abstract Externally generated foam was injected continuously into short porous media. Both flow rate and pressure drop were measured. Liquid saturation was determined by electrical conductivity. Foam quality G, expressed as the ratio of gas volume to total volume, was varied from 0.70 to 0.96. As measured with a modified Fann VG Meter, apparent viscosity of this foam µa decreases with increasing shear rate but usually falls within the range of 50 to 500 cp. At a given shear rate, µa increases almost linearly with G. When measured with a Bendix Ultraviscoson, kinematic µa is independent of r but absolute µa increases with r from about 3 to 8 cp. The effective permeability-apparent viscosity ratio ke/µa decreases almost linearly with G for porous media of high permeability, but the rate of decrease becomes less for tighter ones. The relative permeability-apparent viscosity ratio kr/µa vs G data does not fall on a single line. The kr/µa ratio increases with liquid saturation in the porous medium and with surfactant concentration. Estimates of µa for foam in porous media vary from 30 to 100 cp. INTRODUCTION Although research on the development of a foam-drive, oil recovery process has been going on for almost a decade, most of the significant publications have appeared within the last several years. This illustrates well the rate at which interest in this process is accelerating. Bond and Holbrook1 were the first to describe the use of foam to improve oil recovery in their patent of 1958. They proposed that an aqueous foaming agent slug be injected into the formation and that this be followed by gas to produce a foam in situ. Fried2 studied the injection of foam into porous media which has already been subjected to conventional gas or water drives and found that gas could be used to drive a foam bank which would, in turn, displace additional oil in the form of an oil bank. He attributed the increased oil recovery to the high effective viscosity of foam flowing in porous media. His microscopic observations showed the importance of foam generation and regeneration within the porous medium. By injecting both air and aqueous surfactant solution, Bernard3 generated foams within the porous medium in which oil displacement was being studied. In a separate empirical test, he also measured the dynamic foaming characteristics of the same surfactants in water and/or oil. With some exceptions and for the seven surfactants studied, there seems to be a qualitative relationship between the efficiency of liquid displacement and the dynamic foaming test used. This relationship was not consistent enough to eliminate the necessity of actual foam flood tests in porous media for surfactant selection. In a study basic to gas storage in aquifers, Bennett4 described the displacement of brine by foam in consolidated porous media. Among other things, he stated that the ability of a surfactant solution to foam is more important than the stability of its foam. The presence of a foam bank between the displacing air and the displaced brine improved both breakthrough and ultimate recovery. In a continuation of this work Kolb5 attributed the great reduction in surfactant solution production rate as displacement by air progressed to a decrease in relative permeability to gas. These several effects reported by both Bennett and Kolb can all be attributed to the high apparent viscosity of foam which was obviously flowing in the porous media.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 533
Author(s):  
Qingsong Ma ◽  
Zhanpeng Zheng ◽  
Jiarui Fan ◽  
Jingdong Jia ◽  
Jingjing Bi ◽  
...  

Miscible and near-miscible flooding are used to improve the performance of carbon-dioxide-enhanced oil recovery in heterogeneous porous media. However, knowledge of the effects of heterogeneous pore structure on CO2/oil flow behavior under these two flooding conditions is insufficient. In this study, we construct pore-scale CO2/oil flooding models for various flooding methods and comparatively analyze CO2/oil flow behavior and oil recovery efficiency in heterogeneous porous media. The simulation results indicate that compared to immiscible flooding, near-miscible flooding can increase the CO2 sweep area to some extent, but it is still inefficient to displace oil in small pore throats. For miscible flooding, although CO2 still preferentially displaces oil through big throats, it may subsequently invade small pore throats. In order to substantially increase oil recovery efficiency, miscible flooding is the priority choice; however, the increase of CO2 diffusivity has little effect on oil recovery enhancement. For immiscible and near-miscible flooding, CO2 injection velocity needs to be optimized. High CO2 injection velocity can speed up the oil recovery process while maintaining equivalent oil recovery efficiency for immiscible flooding, and low CO2 injection velocity may be beneficial to further enhancing oil recovery efficiency under near-miscible conditions.


1984 ◽  
Vol 24 (03) ◽  
pp. 333-341 ◽  
Author(s):  
Zohreh Fathi ◽  
Fred W. Ramirez

Abstract The optimal control theory of distributed-paranieter systems has been applied to the problem of determining the best injection policy of a surfactant slug for a tertiary oil recovery chemical flood. The optimization criterion is to maximize the amount of oil recovered while minimizing the chemical cost. A steepest-descent gradient method was used as the computational approach to the solution of this dynamic optimization problem. The performance of the algorithm was examined for the surfactant injection in a one-dimensional flooding problem. Two types of interfacial tension (IFT) behavior problem. Two types of interfacial tension (IFT) behavior were considered. These are a Type A system where the IFT is a monotonically decreasing function with solute concentration and a Type B system where a minimum IFT occurs at a nominal surfactant concentration. For a Type A system, the shape of the optimal in 'faction strategy was not unique, however, there is a unique optimum for the amount of surfactant needed. For a Type B system, the shape of the optimal injection as well as the amount injected was unique. Introduction Surfactant recovery systems are being investigated by the petroleum industry as a means of increasing the petroleum supply. Commercial application of any petroleum supply. Commercial application of any surfactant flooding process relies upon economic projections that indicate a decent return on investment. projections that indicate a decent return on investment. Previously. surfactant systems for tertiary oil recovery have been optimized by adjusting concentrations of individual components empirically. Salinity has been shown to be an important variable in surfactant system optimization. The particular choice of surfactant and cosurfactant has been studied by Salager et al. Multivariable optimization of surfactant systems based on minimizing the IFT has been studied by Vinatiere et al. As reported, such an optimization may or may not coincide with optimal oil recovery since low IFT is a necessary. but not a sufficient condition for achieving, high displacement efficiency. Chemical supply and cost are important parts of economic projections. Because of the high cost of chemicals, it is essential to optimize surfactant systems to provide the greatest oil recovery at the lowest cost. In this paper, an optimization surfactant is taken as the minimization of the chemical cost and maximization of the recovered oil. The goal is to determine the best way of injecting a surfactant slug into the reservoir formation. Mathematical Formulation of the Performance Index Performance Index We desire to obtain maximum oil recovery with a minimum amount of chemical surfactant injected. These objectives can he expressed in a quantitative form through the formulation of a cost functional. J', which is to be minimized, where J' equals the cost of surfactant injected minus the value of oil recovered. This descriptive statement of the cost functional must be translated into a mathematical form to use quantitative optimization techniques. The oil value can be formulated as (1) where C1 = cost of oil per unit volume ($251.6/m 3[$40/bbl]),= volumetric flow, rate of oil at the coreoutlet L = core length, and a = time. The chemical cost is expressed mathematically as (2) where C2 = chemical cost per unit weight ofsurfactant ($5.45 × 10–3/g [$2.47/lbm]), Cs( ) = surfactant concentration of the injectedfluid in weight fraction, P slug = slug density ( 1 g/cm 3 ). and Qw, ( ) = volumetric flow rate of water at thecore inlet. The objective functional is, therefore, (3) JPT P. 333


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Yang Lei ◽  
Shurong Li ◽  
Xiaodong Zhang ◽  
Qiang Zhang ◽  
Lanlei Guo

Polymer flooding is one of the most important technologies for enhanced oil recovery (EOR). In this paper, an optimal control model of distributed parameter systems (DPSs) for polymer injection strategies is established, which involves the performance index as maximum of the profit, the governing equations as the fluid flow equations of polymer flooding, and the inequality constraint as the polymer concentration limitation. To cope with the optimal control problem (OCP) of this DPS, the necessary conditions for optimality are obtained through application of the calculus of variations and Pontryagin’s weak maximum principle. A gradient method is proposed for the computation of optimal injection strategies. The numerical results of an example illustrate the effectiveness of the proposed method.


SPE Journal ◽  
2019 ◽  
Vol 25 (01) ◽  
pp. 416-431 ◽  
Author(s):  
Songyan Li ◽  
Qun Wang ◽  
Zhaomin Li

Summary Foam flooding is an important method used to protect oil reservoirs and increase oil production. However, the research on foam fluid is generally focused on aqueous foam, and there are a few studies on the stability mechanism of oil-based foam. In this paper, a compound surfactant consisting of Span® 20 and a fluorochemical surfactant is determined as the formula for oil-based foam. The foam volume and half-life in the bulk phase are measured to be 275 mL and 302 seconds, respectively, at room temperature and atmospheric pressure. The stability mechanism of oil-based foam is proposed by testing the interfacial tension (IFT) and interfacial viscoelasticity. The lowest IFT of 18.5 mN/m and the maximum viscoelasticity modulus of 16.8 mN/m appear at the concentration of 1.0 wt%, resulting in the most-stable oil-based foam. The effect of oil viscosity and temperature on the properties of oil-based foam is studied. The foam stability increases first and then decreases with the rising oil viscosity, and the stability decreases with rising temperature. The apparent viscosity of oil-based foam satisfies the power-law non-Newtonian properties, and this viscosity is much higher than that of the phases of oil and CO2. The flow of oil-based foam in porous media is studied through microscopic-visualization experiments. Bubble division, bubble merging, and bubble deformation occur during oil-based-foam flow in porous media. The oil-recovery efficiency of the oil-based-foam flooding is 78.3%, while the oil-recovery efficiency of CO2 flooding is only 28.2%. The oil recovery is enhanced because oil-based foam reduces CO2 mobility, inhibits gas channeling, and improves sweep efficiency. The results are meaningful for CO2 mobility control and for the application of foam flooding for enhanced oil recovery (EOR).


Sign in / Sign up

Export Citation Format

Share Document