A Laboratory Study of Gravity Drainage in Fractured Systems Under Miscible Conditions

1969 ◽  
Vol 9 (02) ◽  
pp. 247-254 ◽  
Author(s):  
J.L. Thompson ◽  
N. Mungan

Abstract Laboratory displacement tests were performed to study oil recovery efficiency by gravity drainage in fractured systems under miscible conditions. The porous media used were cylindrical Berea and Blue porous media used were cylindrical Berea and Blue jacket sandstone cores containing a number of well-defined, artificially formed, vertical and subvertical fractures. Butane and Soltrol 130 were the two miscible fluids used. The purpose of the study was to examine the influences of the displacement rate, fracture density, fracture orientation, fracture permeability, matrix permeability, crossflow, core length and connate permeability, crossflow, core length and connate water on the oil recovery. It was found that displacement rate, matrix permeability and the subvertical fractures affected permeability and the subvertical fractures affected oil recovery most. The critical flow rate, based on the matrix permeability, was found to be a significant factor in the process. For displacement rates below the critical flow rate, the oil recovery efficiency appeared to be unaffected by the density of the subvertical fractures. At the high displacement rates, the fracture density becomes important, with the recovery being the most efficient in the core having the greatest number of the subvertical fractures. The magnitude of the fracture permeability, the fracture orientation, the core permeability, the fracture orientation, the core length and the connate water have little effect on the oil recovery efficiency. Introduction Gravity drainage under miscible conditions from relatively thick reservoirs can be a very efficient recovery process, especially at low flow rates where the gravity forces are dominant and, consequently, the adverse viscous fingers associated with the unfavorable viscosity ratio are minimized or eliminated. Such a process might involve injection of an LPG or some solvent bank at the crest and then driving the bank with dry gas. For some favorable combination of reservoir temperature, pressure and oil composition, there may be no need to inject any solvent bank, since enrichment of the dry gas by the light ends of the crude creates an in-situ solvent bank. Slobod and Howlett have studied the effects of gravity segregation in vertical unconsolidated porous media under miscible conditions in the porous media under miscible conditions in the laboratory. The main variables in their study were the viscosity ratio, the density differences and the rate of flow. In this study, the objective was to find the influence of fractures on gravity drainage under miscible conditions. A greater number of related variables were also studied. LABORATORY STUDY CORE DESCRIPTION Displacement tests were performed mostly in cylindrical Berea sandstone cores. In a few cases in which a much lower matrix permeability was desired, Blue jacket sandstone cores were used. The vertical fractures were formed by cutting the cores with a thin circular blade or by parting them along a bedding plane. The vertical fracture plane always contained the axis of the cylindrical core. The subvertical fractures, cut with a saw, were inclined 45 degrees from the horizontal. The line of intersection between the planes of the vertical and subvertical fractures was parallel to the circular faces of the cores in all cases except one, as depicted by VF3HF-2 in Fig. 1. Fracture geometry of the other cores is also given in Fig. 1. Tables 1 and 2 give the physical properties of the solid and fractured cores, respectively. The suffixes and prefixes shown for each core have been used prefixes shown for each core have been used throughout the paper so that the reader may discern the fracture geometry from the core numbers. SPEJ P. 247

1984 ◽  
Vol 24 (05) ◽  
pp. 545-554 ◽  
Author(s):  
Jeffrey H. Harwell ◽  
Robert S. Schechter ◽  
William H. Wade

Abstract The chromatographic movement of surfactant mixtures through porous media is examined to determine possible injection strategies for minimizing the amount of surfactant required in a tertiary oil recovery chemical flood. The model used does not consider the presence of oil but does account for mixed micelle formation. Expressions are derived that represent the surfactant required to expose an entire reservoir to an "effective oil recovery mixture." This effective mixture may be either one whose overall composition is within prescribed limits of the composition of the injected surfactant solution or it may be a mixture whose overall composition varies but which contains micelles of fixed composition. Mixtures considered contain cosolvents and one, two, or three surfactant components. Initial calculations neglect dispersion, but numerical calculations including dispersion leave the conclusion unchanged; within the limitations of the model, there are optimal strategies for the propagation of surfactant mixtures through porous media. The optimal injection strategy varies, depending on the nature of the surfactant solution injected into the porous medium. Conditions for and the location of the optimum are discussed. Conclusions based on observations about these systems then are extended to cover the injection of surfactant mixtures currently available commercially. Introduction Commercial application of surfactants for EOR now appears feasible. The principle at work in such processes is the lowering of interfacial tension (IFT) between the continuous flowing water and trapped residual oil droplets to allow the oil to be mobilized. Mixtures that effectively lower oil/water IFT are often blends of various surfactant types, isomers of the same surfactant, and/or cosurfactants in an electrolyte solution. The oil recovery efficiency of the injected mixture generally is quite sensitive to changes in mixture composition. Change of composition after injection into the reservoir may occur by one or a combination of mechanisms. For example, the mixture components may partition selectively into the various phases present in the reservoir. The mechanism considered here is the chromatographic separation of the mixture into its components due to preferential adsorption of various components onto reservoir minerals-"the chromatographic problem." The recent reports of the Bell Creek Unit A micellar/polymer pilot showed 20% of the injected surfactant produced before any oil bank with negligible concomitant incremental tertiary oil production. Significantly, the surfactants produced were the lower-molecular-weight species. Though alternative mechanisms for this separation yet may be established, the hypothesis of chromatographic separation of the components in the mobile aqueous phase seems adequate. Not only did this produced surfactant not result in enhanced recovery, but since the injected solution was designed to give ultralow IFT's with the low-molecular-weight components in place, it seems likely that the oil recovery efficiency of the remaining surfactant also may have been impaired. These results emphasize the importance of understanding the mechanisms of surfactant chromatographic movement. One means of combatting the chromatographic problem is to reduce the local adsorption of the mixture components-that is, modify the adsorption isotherms of the constituents. This may be done either by changing the reservoir minerals (e.g., by a caustic flood) or by modifying the structure of the surfactant molecules. A complementary approach is to examine the dynamics of the chromatographic movement of surfactant mixtures to identify injection strategies, if they exist, that minimize the total surfactant requirement. It is this question that is considered here. The analysis considers an oil-free linear system and neglects many of the complex features that are encountered in an actual chemical flood. There are several reasons for ignoring these complicating factors. The coherence solutions apply to the systems considered here; whereas the only solutions that include the presence of oil employ numerical computations. An analytical solution is desirable; however, there is an additional more compelling argument that has been used to justify neglecting the presence of oil. The chromatographic movement of a surfactant/ cosurfactant mixture through an oil-free core should demonstrate the qualitative features of the actual oil recovery process. While multiple flowing phases do arise in an actual flood, the released oil forms a bank ahead of the surfactant slug. SPEJ P. 545^


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 533
Author(s):  
Qingsong Ma ◽  
Zhanpeng Zheng ◽  
Jiarui Fan ◽  
Jingdong Jia ◽  
Jingjing Bi ◽  
...  

Miscible and near-miscible flooding are used to improve the performance of carbon-dioxide-enhanced oil recovery in heterogeneous porous media. However, knowledge of the effects of heterogeneous pore structure on CO2/oil flow behavior under these two flooding conditions is insufficient. In this study, we construct pore-scale CO2/oil flooding models for various flooding methods and comparatively analyze CO2/oil flow behavior and oil recovery efficiency in heterogeneous porous media. The simulation results indicate that compared to immiscible flooding, near-miscible flooding can increase the CO2 sweep area to some extent, but it is still inefficient to displace oil in small pore throats. For miscible flooding, although CO2 still preferentially displaces oil through big throats, it may subsequently invade small pore throats. In order to substantially increase oil recovery efficiency, miscible flooding is the priority choice; however, the increase of CO2 diffusivity has little effect on oil recovery enhancement. For immiscible and near-miscible flooding, CO2 injection velocity needs to be optimized. High CO2 injection velocity can speed up the oil recovery process while maintaining equivalent oil recovery efficiency for immiscible flooding, and low CO2 injection velocity may be beneficial to further enhancing oil recovery efficiency under near-miscible conditions.


SPE Journal ◽  
2019 ◽  
Vol 25 (01) ◽  
pp. 416-431 ◽  
Author(s):  
Songyan Li ◽  
Qun Wang ◽  
Zhaomin Li

Summary Foam flooding is an important method used to protect oil reservoirs and increase oil production. However, the research on foam fluid is generally focused on aqueous foam, and there are a few studies on the stability mechanism of oil-based foam. In this paper, a compound surfactant consisting of Span® 20 and a fluorochemical surfactant is determined as the formula for oil-based foam. The foam volume and half-life in the bulk phase are measured to be 275 mL and 302 seconds, respectively, at room temperature and atmospheric pressure. The stability mechanism of oil-based foam is proposed by testing the interfacial tension (IFT) and interfacial viscoelasticity. The lowest IFT of 18.5 mN/m and the maximum viscoelasticity modulus of 16.8 mN/m appear at the concentration of 1.0 wt%, resulting in the most-stable oil-based foam. The effect of oil viscosity and temperature on the properties of oil-based foam is studied. The foam stability increases first and then decreases with the rising oil viscosity, and the stability decreases with rising temperature. The apparent viscosity of oil-based foam satisfies the power-law non-Newtonian properties, and this viscosity is much higher than that of the phases of oil and CO2. The flow of oil-based foam in porous media is studied through microscopic-visualization experiments. Bubble division, bubble merging, and bubble deformation occur during oil-based-foam flow in porous media. The oil-recovery efficiency of the oil-based-foam flooding is 78.3%, while the oil-recovery efficiency of CO2 flooding is only 28.2%. The oil recovery is enhanced because oil-based foam reduces CO2 mobility, inhibits gas channeling, and improves sweep efficiency. The results are meaningful for CO2 mobility control and for the application of foam flooding for enhanced oil recovery (EOR).


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 665 ◽  
Author(s):  
Aadland ◽  
Jakobsen ◽  
Heggset ◽  
Long-Sanouiller ◽  
Simon ◽  
...  

Recent studies have discovered a substantial viscosity increase of aqueous cellulose nanocrystal (CNC) dispersions upon heat aging at temperatures above 90 °C. This distinct change in material properties at very low concentrations in water has been proposed as an active mechanism for enhanced oil recovery (EOR), as highly viscous fluid may improve macroscopic sweep efficiencies and mitigate viscous fingering. A high-temperature (120 °C) core flood experiment was carried out with 1 wt. % CNC in low salinity brine on a 60 cm-long sandstone core outcrop initially saturated with crude oil. A flow rate corresponding to 24 h per pore volume was applied to ensure sufficient viscosification time within the porous media. The total oil recovery was 62.2%, including 1.2% oil being produced during CNC flooding. Creation of local log-jams inside the porous media appears to be the dominant mechanism for additional oil recovery during nano flooding. The permeability was reduced by 89.5% during the core flood, and a thin layer of nanocellulose film was observed at the inlet of the core plug. CNC fluid and core flood effluent was analyzed using atomic force microscopy (AFM), particle size analysis, and shear rheology. The effluent was largely unchanged after passing through the core over a time period of 24 h. After the core outcrop was rinsed, a micro computed tomography (micro-CT) was used to examine heterogeneity of the core. The core was found to be homogeneous.


Author(s):  
Jianlong Xiu ◽  
Tianyuan Wang ◽  
Ying Guo ◽  
Qingfeng Cui ◽  
Lixin Huang ◽  
...  

2012 ◽  
Vol 15 (3) ◽  
pp. 211-232 ◽  
Author(s):  
Sohrab Zendehboudi ◽  
Ali Shafiei ◽  
Ioannis Chatzis ◽  
Maurice B. Dusseault

2019 ◽  
Vol 6 (6) ◽  
pp. 181902 ◽  
Author(s):  
Junchen Lv ◽  
Yuan Chi ◽  
Changzhong Zhao ◽  
Yi Zhang ◽  
Hailin Mu

Reliable measurement of the CO 2 diffusion coefficient in consolidated oil-saturated porous media is critical for the design and performance of CO 2 -enhanced oil recovery (EOR) and carbon capture and storage (CCS) projects. A thorough experimental investigation of the supercritical CO 2 diffusion in n -decane-saturated Berea cores with permeabilities of 50 and 100 mD was conducted in this study at elevated pressure (10–25 MPa) and temperature (333.15–373.15 K), which simulated actual reservoir conditions. The supercritical CO 2 diffusion coefficients in the Berea cores were calculated by a model appropriate for diffusion in porous media based on Fick's Law. The results show that the supercritical CO 2 diffusion coefficient increases as the pressure, temperature and permeability increase. The supercritical CO 2 diffusion coefficient first increases slowly at 10 MPa and then grows significantly with increasing pressure. The impact of the pressure decreases at elevated temperature. The effect of permeability remains steady despite the temperature change during the experiments. The effect of gas state and porous media on the supercritical CO 2 diffusion coefficient was further discussed by comparing the results of this study with previous study. Based on the experimental results, an empirical correlation for supercritical CO 2 diffusion coefficient in n -decane-saturated porous media was developed. The experimental results contribute to the study of supercritical CO 2 diffusion in compact porous media.


Sign in / Sign up

Export Citation Format

Share Document