Estimation of Depths of Fluid Contacts and Relative Permeability Curves by History Matching Using Iterative Ensemble-Kalman Smoothers

SPE Journal ◽  
2009 ◽  
Vol 15 (02) ◽  
pp. 509-525 ◽  
Author(s):  
Yudou Wang ◽  
Gaoming Li ◽  
Albert C. Reynolds

Summary With the ensemble Kalman filter (EnKF) or smoother (EnKS), it is easy to adjust a wide variety of model parameters by assimilation of dynamic data. We focus first on the case where realizations and estimates of the depths of the initial fluid contacts, as well as grid- block rock-property fields, are generated by matching production data with the EnKS. Then we add the parameters defining power law relative permeability curves to the set of parameters estimated by assimilating production data with EnKS. The efficiency of EnKF and EnKS arises because data are assimilated sequentially in time and so "history matching data" requires only one forward run of the reservoir simulator for each ensemble member. For EnKS and EnKF to yield reliable characterizations of the uncertainty in model parameters and future performance predictions, the updated reservoir-simulation variables (e.g., saturations and pressures) must be statistically consistent with the realizations of these variables that would be obtained by rerunning the simulator from time zero using the updated model parameters. This statistical consistency can be established only under assumptions of Gaussi- anity and linearity that do not normally hold. Here, we use iterative EnKS methods that are statistically consistent, and show that, for the problems considered here, iteration significantly improves the performance of EnKS.

2019 ◽  
Vol 89 ◽  
pp. 01004
Author(s):  
Dylan Shaw ◽  
Peyman Mostaghimi ◽  
Furqan Hussain ◽  
Ryan T. Armstrong

Due to the poroelasticity of coal, both porosity and permeability change over the life of the field as pore pressure decreases and effective stress increases. The relative permeability also changes as the effective stress regime shifts from one state to another. This paper examines coal relative permeability trends for changes in effective stress. The unsteady-state technique was used to determine experimental relativepermeability curves, which were then corrected for capillary-end effect through history matching. A modified Brooks-Corey correlation was sufficient for generating relative permeability curves and was successfully used to history match the laboratory data. Analysis of the corrected curves indicate that as effective stress increases, gas relative permeability increases, irreducible water saturation increases and the relative permeability cross-point shifts to the right.


SPE Journal ◽  
2006 ◽  
Vol 11 (04) ◽  
pp. 418-430 ◽  
Author(s):  
Karl D. Stephen ◽  
Juan Soldo ◽  
Colin Macbeth ◽  
Mike A. Christie

Summary Time-lapse (or 4D) seismic is increasingly being used as a qualitative description of reservoir behavior for management and decision-making purposes. When combined quantitatively with geological and flow modeling as part of history matching, improved predictions of reservoir production can be obtained. Here, we apply a method of multiple-model history matching based on simultaneous comparison of spatial data offered by seismic as well as individual well-production data. Using a petroelastic transform and suitable rescaling, forward-modeled simulations are converted into predictions of seismic impedance attributes and compared to observed data by calculation of a misfit. A similar approach is applied to dynamic well data. This approach improves on gradient-based methods by avoiding entrapment in local minima. We demonstrate the method by applying it to the UKCS Schiehallion reservoir, updating the operator's model. We consider a number of parameters to be uncertain. The reservoir's net to gross is initially updated to better match the observed baseline acoustic impedance derived from the RMS amplitudes of the migrated stack. We then history match simultaneously for permeability, fault transmissibility multipliers, and the petroelastic transform parameters. Our results show a good match to the observed seismic and well data with significant improvement to the base case. Introduction Reservoir management requires tools such as simulation models to predict asset behavior. History matching is often employed to alter these models so that they compare favorably to observed well rates and pressures. This well information is obtained at discrete locations and thus lacks the areal coverage necessary to accurately constrain dynamic reservoir parameters such as permeability and the location and effect of faults. Time-lapse seismic captures the effect of pressure and saturation on seismic impedance attributes, giving 2D maps or 3D volumes of the missing information. The process of seismic history matching attempts to overlap the benefits of both types of information to improve estimates of the reservoir model parameters. We first present an automated multiple-model history-matching method that includes time-lapse seismic along with production data, based on an integrated workflow (Fig. 1). It improves on the classical approach, wherein the engineer manually adjusts parameters in the simulation model. Our method also improves on gradient-based methods, such as Steepest Descent, Gauss-Newton, and Levenberg-Marquardt algorithms (e.g., Lépine et al. 1999;Dong and Oliver 2003; Gosselin et al. 2003; Mezghani et al. 2004), which are good at finding local likelihood maxima but can fail to find the global maximum. Our method is also faster than stochastic methods such as genetic algorithms and simulated annealing, which often require more simulations and may have slower convergence rates. Finally, multiple models are generated, enabling posterior uncertainty analysis in a Bayesian framework (as in Stephen and MacBeth 2006a).


SPE Journal ◽  
2020 ◽  
Vol 25 (06) ◽  
pp. 3265-3279
Author(s):  
Hamidreza Hamdi ◽  
Hamid Behmanesh ◽  
Christopher R. Clarkson

Summary Rate-transient analysis (RTA) is a useful reservoir/hydraulic fracture characterization method that can be applied to multifractured horizontal wells (MFHWs) producing from low-permeability (tight) and shale reservoirs. In this paper, we applied a recently developed three-phase RTA technique to the analysis of production data from an MFHW completed in a low-permeability volatile oil reservoir in the Western Canadian Sedimentary Basin. This RTA technique is used to analyze the transient linear flow regime for wells operated under constant flowing bottomhole pressure (BHP) conditions. With this method, the slope of the square-root-of-time plot applied to any of the producing phases can be used to directly calculate the linear flow parameter xfk without defining pseudovariables. The method requires a set of input pressure/volume/temperature (PVT) data and an estimate of two-phase relative permeability curves. For the field case studied herein, the PVT model is constructed by tuning an equation of state (EOS) from a set of PVT experiments, while the relative permeability curves are estimated from numerical model history-matchingresults. The subject well, an MFHW completed in 15 stages, produces oil, water, and gas at a nearly constant (measured downhole) flowing BHP. This well is completed in a low-permeability,near-critical volatile oil system. For this field case, application of the recently proposed RTA method leads to an estimate of xfk that is in close agreement (within 7%) with the results of a numerical model history match performed in parallel. The RTA method also provides pressure–saturation (P–S) relationships for all three phases that are within 2% of those derived from the numerical model. The derived P–S relationships are central to the use of other RTA methods that require calculation of multiphase pseudovariables. The three-phase RTA technique developed herein is a simple-yet-rigorous and accurate alternative to numerical model history matching for estimating xfk when fluid properties and relative permeability data are available.


2018 ◽  
Vol 58 (2) ◽  
pp. 683 ◽  
Author(s):  
Peter Behrenbruch ◽  
Tuan G. Hoang ◽  
Khang D. Bui ◽  
Minh Triet Do Huu ◽  
Tony Kennaird

The Laminaria field, located offshore in the Timor Sea, is one of Australia’s premier oil developments operated for many years by Woodside Energy Ltd. First production was achieved in 1999 using a state-of-the-art floating production storage and offloading vessel, the largest deployed in Australian waters. As is typical, dynamic reservoir simulation was used to predict reservoir performance and forecast production and ultimate recovery. Initial models, using special core analysis (SCAL) laboratory data and pseudos, covered a range of approaches, field and conceptual models. Initial coarser models also used straight-line relative permeability curves. These models were later refined during history matching. The success of simulation studies depends critically on optimal gridding, particularly vertical definition. An objective of the study presented is to demonstrate the importance of optimal and detailed vertical zonation using Routine Core Analysis data and a range of Hydraulic Flow Zone Unit models. In this regard, the performance of a fine-scale model is compared with three alternative, more traditional and coarse models. Secondly the choice of SCAL rock parameters may also have a significant impact, particularly relative permeability. This paper discusses the use of the more recently developed Carman-Kozeny based SCAL models, the Modified Carman-Kozeny Purcell (MCKP) model for capillary pressure and the 2-phase Modified Carman-Kozeny (2p-MCK) model for relative permeability. These models compare favourably with industry standard approaches, the use of Leverett J-functions for capillary pressure and the Modified Brooks-Corey model for relative permeability. The benefit of the MCK-based models is that they have better functionality and far better adherence to actual laboratory data.


1973 ◽  
Vol 13 (06) ◽  
pp. 343-347 ◽  
Author(s):  
John S. Archer ◽  
S.W. Wong

Abstract Relative permeability curves calculated from laboratory waterflood history by the method of Johnson, Bossler and Naumann (JBN) are often poorly defined or anomalous at low and intermediate poorly defined or anomalous at low and intermediate water saturations. Poor definition can be encountered with strongly water-wet homogeneous cores when the displacement is piston-like. Anomalous curve shapes are associated with laboratory-observed water breakthrough ahead of the main flood front and are common in cores that have contrasting permeability streaks. The JBN technique, although permeability streaks. The JBN technique, although valid for the conditions assumed in its development, is unsatisfactory for the conditions specified above. A reservoir simulator has been used to model laboratory tests and thereby provide an alternative interpretation procedure. The simulation uses core properties and trial-and-error relative permeabilities. properties and trial-and-error relative permeabilities. The shapes of the relative permeability curves are adjusted until calculated oil recovery and relative injectivity curves match those obtained from the laboratory displacement tests. The technique has been used successfully to obtain meaningful relative permeability curves for piston-like displacement, mixed wettability systems, piston-like displacement, mixed wettability systems, and heterogeneous carbonates. The technique has also been used in evaluating empirical equations for calculating relative permeability. Introduction Numerical reservoir simulators are finding increasing application in production history matching and performance predictions. Because of the degree of sophistication reached with these models, it is mandatory that the fluid flow properties be of the highest possible quality. Of all the rock and fluid properties required in predicting performance, it is properties required in predicting performance, it is often the relative permeability characteristics that are the most critically important. These data are usually obtained from laboratory waterflood tests using reservoir core samples. The laboratory waterflood test is an attempt to represent the linear displacement behavior of the oil/water/reservoir-rock system. The wettability properties of the rock system should be preserved properties of the rock system should be preserved in the laboratory core sample if reliable results are to be obtained. Furthermore, the viscosity ratio and surface tension of the oil/water system in the laboratory test should ideally be made the same as those in the reservoir. In interpreting laboratory waterflood tests the unsteady-state equations are usually solved by methods of Buckley-Leverett, Welge and Johnson, Bossler and Neumann (JBN). These interpretations are sometimes inadequate for defining relative permeability curves for heterogeneous reservoir permeability curves for heterogeneous reservoir rock systems or for water displacing a very light oil in a homogeneous sandstone. For example, a number of writers have observed anomalous changes in the relative permeability to water during the flooding of heterogeneous carbonate core samples. The relative permeability to water does not increase smoothly with increasing water saturation, but increases stepwise or even humps. Such behavior appears to reflect small-scale local heterogeneity in the core sample and is likely to be insignificant on a field scale. The heterogeneity is often indicated in the laboratory by an observed water breakthrough at the core-sample production face ahead of the main flood front. The time of water breakthrough is an important measurement used in the calculation of relative permeability by the JBN method. If the breakthrough permeability by the JBN method. If the breakthrough time observed is not that of the main flood front but is a little early, then the relative permeabilities calculated will not represent the properties of the bulk of the core sample. It is under these conditions that anomalous relative permeability curves usually occur. We suggest in this paper that, in many cases, the small changes in pressure and in oil and water production rate that accompany anomalous relative production rate that accompany anomalous relative permeability curves can be smoothed to reflect permeability curves can be smoothed to reflect properties more consistent with the bulk behavior properties more consistent with the bulk behavior of the core sample. In essence, we are saying that together the smoothed oil and water production history and the pressure history of the laboratory core sample represent a unique property of that sample. SPEJ P. 343


2013 ◽  
Vol 16 (04) ◽  
pp. 412-422
Author(s):  
A.M.. M. Farid ◽  
Ahmed H. El-Banbi ◽  
A.A.. A. Abdelwaly

Summary The depletion performance of gas/condensate reservoirs is highly influenced by changes in fluid composition below the dewpoint. The long-term prediction of condensate/gas reservoir behavior is therefore difficult because of the complexity of both composition variation and two-phase-flow effects. In this paper, an integrated model was developed to simulate gas-condensate reservoir/well behavior. The model couples the compositional material balance or the generalized material-balance equations for reservoir behavior, the two-phase pseudo integral pressure for near-wellbore behavior, and outflow correlations for wellbore behavior. An optimization algorithm was also used with the integrated model so it can be used in history-matching mode to estimate original gas in place (OGIP), original oil in place (OOIP), and productivity-index (PI) parameters for gas/condensate wells. The model also can be used to predict the production performance for variable tubinghead pressure (THP) and variable production rate. The model runs fast and requires minimal input. The developed model was validated by use of different simulation cases generated with a commercial compositional reservoir simulator for a variety of reservoir and well conditions. The results show a good agreement between the simulation cases and the integrated model. After validating the integrated model against the simulated cases, the model was used to analyze production data for a rich-gas/condensate field (initial condensate/gas ratio of 180 bbl/ MMscf). THP data for four wells were used along with basic reservoir and production data to obtain original fluids in place and PIs of the wells. The estimated parameters were then used to forecast the gas and condensate production above and below the dewpoint. The model is also capable of predicting reservoir pressure, bottomhole flowing pressure, and THP and can account for completion changes when they occur.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5125
Author(s):  
Qiong Wang ◽  
Xiuwei Liu ◽  
Lixin Meng ◽  
Ruizhong Jiang ◽  
Haijun Fan

It is well acknowledged that due to the polymer component, the oil–water relative permeability curve in polymer flooding is different from the curve in waterflooding. As the viscoelastic properties and the trapping number are presented for modifying the oil–water relative permeability curve, the integration of these two factors for the convenience of simulation processes has become a key issue. In this paper, an interpolation factor Ω that depends on the normalized polymer concentration is firstly proposed for simplification. Then, the numerical calculations in the self-developed simulator are performed to discuss the effects of the interpolation factor on the well performances and the applications in field history matching. The results indicate that compared with the results of the commercial simulator, the simulation with the interpolation factor Ω could more accurately describe the effect of the injected polymer solution in controlling water production, and more efficiently simplify the combination of factors on relative permeability curves in polymer flooding. Additionally, for polymer flooding history matching, the interpolation factor Ω is set as an adjustment parameter based on core flooding results to dynamically consider the change of the relative permeability curves, and has been successfully applied in the water cut matching of the two wells in Y oilfield. This investigation provides an efficient method to evaluate the seepage behavior variation of polymer flooding.


Sign in / Sign up

Export Citation Format

Share Document