Experimental Study on High Viscosity Oil/Water Flow in Horizontal and Vertical Pipes

Author(s):  
Duc Huu Vuong ◽  
Hong-Quan Zhang ◽  
Cem Sarica ◽  
Mingxiu Li
2002 ◽  
Vol 124 (2) ◽  
pp. 187-195 ◽  
Author(s):  
Takaaki Sakai ◽  
Masaki Morishita ◽  
Koji Iwata ◽  
Seiji Kitamura

Experimental validation of the design guideline to prevent the failure of a thermometer well by vortex-induced vibration is presented, clarifying the effect of structure damping on displacement amplitudes of a cantilever cylinder. The available experimental data in piping are limited to those with small damping in water flow, because of the difficulty in increasing structure damping of the cantilever cylinders in experiments. In the present experiment, high-viscosity oil within cylinders is used to control their structure damping. Resulting values of reduced damping Cn are 0.49, 0.96, 1.23, 1.98, and 2.22. The tip displacements of the cylinder induced by vortex vibration were measured in the range of reduced velocity Vr from 0.7 to 5 (Reynolds number is 7.8×104 at Vr=1). Cylinders with reduced damping 0.49 and 0.96 showed vortex-induced vibration in the flow direction in the Vr>1 region. However, in cases of reduced damping of 1.23, 1.98, and 2.22, the vibration was suppressed to less than 1 percent diameter. It is confirmed that the criteria of “Vr<3.3 and Cn>1.2” for the prevention of vortex-induced vibration is reasonably applicable to a cantilever cylinder in a water flow pipe.


2013 ◽  
Vol 28 (03) ◽  
pp. 306-316 ◽  
Author(s):  
Shufan Wang ◽  
Hong-Quan Zhang ◽  
Cem Sarica ◽  
Eduardo Pereyra

SPE Journal ◽  
2012 ◽  
Vol 17 (01) ◽  
pp. 243-250 ◽  
Author(s):  
H.Q.. Q. Zhang ◽  
D.H.. H. Vuong ◽  
C.. Sarica

Summary Water is produced along with heavy oil either during the primary production or during enhanced oil recovery. Therefore, cocurrent oil/water flow is a common occurrence in heavy-oil production and transportation. Production-system design is strongly dependent on accurate predictions of the oil-/water-flow behavior. The predictions of previous mechanistic models for pressure gradient and water holdup are tested with the data acquired, and significant discrepancies are identified, especially for horizontal flow (Vuong 2009). The model performance is largely dependent on the predictions of phase inversion, distribution, and interaction. On the basis of the new understandings from experimental observations, the Zhang and Sarica (2006) unified model is modified by adding a new closure relationship for water-wetted-wall fraction in stratified flow and a new interfacial shear model based on mixing-length theory. The new model is compared with both high-viscosity and low-viscosity oil-/water-flow experimental results, and significant improvements are observed.


2021 ◽  
Vol 229 ◽  
pp. 116097
Author(s):  
Jing Shi ◽  
Mustapha Gourma ◽  
Hoi Yeung

Sign in / Sign up

Export Citation Format

Share Document