An experimental investigation of high-viscosity oil-water flow in a horizontal pipe

2017 ◽  
Vol 95 (12) ◽  
pp. 2423-2434 ◽  
Author(s):  
Jing Shi ◽  
Hameed Al-Awadi ◽  
Hoi Yeung
2011 ◽  
Vol 66 (23) ◽  
pp. 5968-5975 ◽  
Author(s):  
C. Foletti ◽  
S. Farisè ◽  
B. Grassi ◽  
D. Strazza ◽  
M. Lancini ◽  
...  

SPE Journal ◽  
2012 ◽  
Vol 17 (01) ◽  
pp. 243-250 ◽  
Author(s):  
H.Q.. Q. Zhang ◽  
D.H.. H. Vuong ◽  
C.. Sarica

Summary Water is produced along with heavy oil either during the primary production or during enhanced oil recovery. Therefore, cocurrent oil/water flow is a common occurrence in heavy-oil production and transportation. Production-system design is strongly dependent on accurate predictions of the oil-/water-flow behavior. The predictions of previous mechanistic models for pressure gradient and water holdup are tested with the data acquired, and significant discrepancies are identified, especially for horizontal flow (Vuong 2009). The model performance is largely dependent on the predictions of phase inversion, distribution, and interaction. On the basis of the new understandings from experimental observations, the Zhang and Sarica (2006) unified model is modified by adding a new closure relationship for water-wetted-wall fraction in stratified flow and a new interfacial shear model based on mixing-length theory. The new model is compared with both high-viscosity and low-viscosity oil-/water-flow experimental results, and significant improvements are observed.


2006 ◽  
Vol 32 (9) ◽  
pp. 1087-1099 ◽  
Author(s):  
K. Piela ◽  
R. Delfos ◽  
G. Ooms ◽  
J. Westerweel ◽  
R.V.A. Oliemans ◽  
...  

2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Wei Wang ◽  
Jing Gong

In oil-water two-phase dispersed flow, phase inversion may occur when the continuous phase becomes dispersed. This phenomenon, which controls the nature of the phase in contact with the pipe, has a great importance on the corrosion and on the pressure drop, which dramatically affects the delivery ability and operational modality. It is therefore imperative for the phase inversion research to be taken into consideration. However, most of the knowledge on phase inversion is for light mineral oil with low viscosity, few research focuses on high viscosity oil-water phase inversion. Arirachakaran et al. (1989, “An Analysis of Oil/Water Flow Phenomena in Horizontal Pipes,” SPE Professional Product Operating Symposium, Oklahoma, SPE Paper No. 18836) found that critical water fraction when inversion occurred was dramatically reduced with the increment of oil viscosity, and the existing phase inversion models are invalidated. In this paper, an experimental study has been made of high viscosity mineral oil-water flow through a horizontal pipe loop. Results indicate that phase inversion for oil phase with high viscosity occurs much earlier than low viscosity oil, and phase inversion tends to be delayed, with the increment in experimental temperature. The influence of mixture velocities on the inversion process could be neglected in the range of mixture velocities that we studied. As well, inversion point obtain by our experiment are best predicted by the correlation of Arirachakaran et al. (1989, “An Analysis of Oil/Water Flow Phenomena in Horizontal Pipes,” SPE Professional Product Operating Symposium, Oklahoma, SPE Paper No. 18836). Models of Decarre and Fabre (1997, “Phase Inversion Prediction Study,” Rev. Inst. Fr. Pet., 52, pp. 415–424) and Braunerand Ullmann (2002, “Modeling of Phase Inversion Phenomenon in Two-Phase Pipe Flows,” Int. J. Multiph. Flow, 28, pp. 1177–1204), based on minimization of system total energy, seem to be invalidated for high viscosity oil.


2021 ◽  
Vol 229 ◽  
pp. 116097
Author(s):  
Jing Shi ◽  
Mustapha Gourma ◽  
Hoi Yeung

2002 ◽  
Vol 124 (2) ◽  
pp. 187-195 ◽  
Author(s):  
Takaaki Sakai ◽  
Masaki Morishita ◽  
Koji Iwata ◽  
Seiji Kitamura

Experimental validation of the design guideline to prevent the failure of a thermometer well by vortex-induced vibration is presented, clarifying the effect of structure damping on displacement amplitudes of a cantilever cylinder. The available experimental data in piping are limited to those with small damping in water flow, because of the difficulty in increasing structure damping of the cantilever cylinders in experiments. In the present experiment, high-viscosity oil within cylinders is used to control their structure damping. Resulting values of reduced damping Cn are 0.49, 0.96, 1.23, 1.98, and 2.22. The tip displacements of the cylinder induced by vortex vibration were measured in the range of reduced velocity Vr from 0.7 to 5 (Reynolds number is 7.8×104 at Vr=1). Cylinders with reduced damping 0.49 and 0.96 showed vortex-induced vibration in the flow direction in the Vr>1 region. However, in cases of reduced damping of 1.23, 1.98, and 2.22, the vibration was suppressed to less than 1 percent diameter. It is confirmed that the criteria of “Vr<3.3 and Cn>1.2” for the prevention of vortex-induced vibration is reasonably applicable to a cantilever cylinder in a water flow pipe.


Sign in / Sign up

Export Citation Format

Share Document