High-Temperature Rheological Study of Foam Fracturing Fluids

1987 ◽  
Vol 39 (05) ◽  
pp. 613-619 ◽  
Author(s):  
P.C. Harris ◽  
V.G. Reidenbach
SPE Journal ◽  
2016 ◽  
Vol 22 (02) ◽  
pp. 622-631 ◽  
Author(s):  
Feng Liang ◽  
Ghaithan Al-Muntasheri ◽  
Hooisweng Ow ◽  
Jason Cox

Summary In the quest to discover more natural-gas resources, considerable attention has been devoted to finding and extracting gas locked within tight formations with permeability in the nano- to microdarcy range. The main challenges associated with working in such formations are the intrinsically high-temperature and high-pressure bottom conditions. For formations with bottomhole temperatures at approximately 350–400°F, traditional hydraulic-fracturing fluids that use crosslinked polysaccharide gels, such as guar and its derivatives, are not suitable because of significant polymer breakdown in this temperature range. Fracturing fluids that can work at these temperatures require thermally stable synthetic polymers such as acrylamide-based polymers. However, such polymers have to be used at very-high concentrations to suspend proppants. The high-polymer concentrations make it very difficult to completely degrade at the end of a fracturing operation. As a consequence, formation damage by polymer residue can reduce formation conductivity to gas flow. This paper addresses the shortcomings of the current state-of-the-art high-temperature fracturing fluids and focuses on developing a less-damaging, high-temperature-stable fluid that can be used at temperatures up to 400°F. A laboratory study was conducted with this novel system, which comprises a synthetic acrylamide-based copolymer gelling agent and is capable of being crosslinked with an amine-containing polymer-coated nanosized particulate crosslinker (nanocrosslinker). The laboratory data have demonstrated that the temperature stability of the crosslinked fluid is much better than that of a similar fluid lacking the nanocrosslinker. The nanocrosslinker allows the novel fluid system to operate at significantly lower polymer concentrations (25–45 lbm/1,000 gal) compared with current commercial fluid systems (50–87 lbm/1,000 gal) designed for temperatures from 350 to 400°F. This paper presents results from rheological studies that demonstrate superior crosslinking performance and thermal stability in this temperature range. This fracturing-fluid system has sufficient proppant-carrying viscosity, and allows for efficient cleanup by use of an oxidizer-type breaker. Low polymer loading and little or no polymer residue are anticipated to facilitate efficient cleanup, reduced formation damage, better fluid conductivity, and enhanced production rates. Laboratory results from proppant-pack regained-conductivity tests are also presented.


2010 ◽  
Author(s):  
Charles David Armstrong ◽  
Richard Fowler Stevens ◽  
Hoang Van Le ◽  
Christopher J. Stephenson ◽  
Qi Qu

2015 ◽  
Author(s):  
Feng Liang ◽  
Ghaithan Al-Muntasheri ◽  
Hooisweng Ow ◽  
Jason Cox

SPE Journal ◽  
2020 ◽  
pp. 1-19 ◽  
Author(s):  
Ahmed Hanafy ◽  
Faisal Najem ◽  
Hisham A. Nasr-El-Din

Summary Viscoelastic surfactants (VESs) have been used for acid diversion and fracturing fluids. VESs were introduced because they are less damaging than polymers. VESs’ high cost, low thermal stability, and incompatibility with several additives (e.g., corrosion inhibitors) limit their use. The goal of this study is to investigate the interaction of VES micelles with different nanoparticle shapes to reduce VES loadings and enhance their thermal stability. This work examined spherical and rod-shaped nanoparticles of silica and iron oxides. The effects of particle size, shape, and surface charge on a zwitterionic VES micellization were conducted. The physical properties were measured using zeta-potential, dynamic light scattering (DLS), and transmission electron microscopy (TEM). The rheological performances of VES solutions were evaluated at 280 and 350°F using a high-pressure/high-temperature rotational rheometer. The proppant-carrying capacity of the fracturing fluids was evaluated using a high-pressure/high-temperature see-through cell and dynamic oscillatory viscometer. The fluid loss and formation damage were determined using corefloods and computed-tomography scans. The interaction between nanoparticles and VES is strongly dependent on the VES concentration, temperature, nanoparticle characteristics, and concentration. The spherical particles at 7-lbm/1,000 gal loading extended the VES-based-fluid thermal stability at VES loading of 4 wt% up to 350°F. The nanorods effectively enhanced and extended the thermal-stability range of the VES system at VES concentration of only 2 wt%. Both particle shapes performed similarly at 4 wt% VES and 280°F. The addition of silica nanorods extended the thermal stability of the 4 wt% VES aqueous fluid, which resulted in an apparent viscosity of 200 cp for 2 hours. The addition of rod-shaped particles enhanced the micelle to micelle entanglement, especially at VES loading of 2 wt%. The use of nanoparticles enhanced the micelle/micelle networking, boosting the fluid-storage modulus and enhancing the proppant-carrying capacity. The addition of nanoparticles to the VES lowered its fluid-loss rate and minimized formation damage caused by VES-fluid invasion. This research gives guidelines to synthesize nanoparticles to accommodate the chemistry of surfactants for higher-temperature applications. It highlights the importance of the selected nanoparticles on the rheological performance of VES.


2014 ◽  
Author(s):  
Leiming Li ◽  
Hong Sun ◽  
Qi Qu ◽  
Michael P. Mehle ◽  
Marshall G. Ault ◽  
...  

2021 ◽  
Author(s):  
Mumin Abdalla Abdelrahim ◽  
Dr. Bisweswar Ghosh ◽  
Dr. Hadi Belhaj ◽  
Debayan Ghosh

Abstract Hydraulic fracturing, commonly referred to as fracking, is a widely used technology to enhance the productivity of low-perm reservoirs and the aqueous-based fracturing fluids use guar as the rheology builder. Residual polymer layer over the fractured surface results in a reduced matrix to fracture permeability, causing reduced well productivity. This research aims to develop a specialized mannanase enzyme and evaluate its efficiency in degrading linear and cross-linked guar polymer gel as a function of time, temperature, and breaker concentration, to enhance the effectiveness of the fracturing process and yielding higher production. The study begins with developing high-temperature stable mannanase using "protein engineering" tools to minimize denaturation at high temperatures and the underlying formation chemistry, followed by optimization of polymer, crosslinker, and breaker concentration through the measurement of rheological properties at moderate to high temperature. Initial studies were conducted using HT-HP filter press and filter papers as porous media for visual inspection of polymer cake dissolution efficiency. Final conclusions were drawn from the simulated coreflooding studies, wherein the injection and production return permeabilities were investigated on post-fracture and enzyme-treated cores, where the breaker was mixed with the frac fluid applied once the frac fluid is in place. The thermal stability of the enzyme breaker vis-à-vis viscosity reduction and degradation pattern of linear and cross-linked gel observed from the break test showed that the enzyme is stable up to 250 °F and can reduce viscosity by more than 1800 cp (99% breaking ability).


2021 ◽  
Author(s):  
Zebo Yuan ◽  
Xiaoqiang Wang ◽  
Lizhi Zhou ◽  
Huifeng Liu ◽  
Xu Li ◽  
...  

Abstract For a successful hydraulic fracturing operation, shear recovery and thermal stability are critical in terms of successful fracture creation and proppant placement. Sodium thiosulfate is one of the most commonly used gel stabilizers in fracturing gel. This paper reported a well in sulfur-free gas reservoir produced hydrogen sulfide as much as 20000ppm after hydraulic fracturing operation. A series of experiments were carried out to reveal the mechanism of hydrogen sulfide production. Results showed that in solution with PH less than 6.5, when the temperature is higher than 119 degrees Celsius, sodium thiosulfate will react with hydrogen ions to generate hydrogen sulfide. In this complex reaction, there is also precipitation of elemental sulfur, which may block the pores of the reservoir and thence counteract the effect of hydraulic fracturing. The acidic solution in a fractured well is from (1) Spent acid left downhole due to pre-acid used to reduce fracturing pressure, and (2) Sulfuric acid produced by the decomposition of ammonium persulfate which is used as gel breaker at high temperature. This paper proposed two solutions to the problem of high-temperature fracturing fluids,one is to use a sulfur-free temperature stabilizer,and the other is to create a non-acid downhole environment. The opinions provided by this paper can help the operators reduce the risk of the damage of hydrogen sulfide and protect the integrity of the well of high temperature fracturing wells.


Sign in / Sign up

Export Citation Format

Share Document