Production Behavior of Gas Hydrate Under Hot Sea Water Injection: Laboratory Case Study

2010 ◽  
Author(s):  
Ardian Nengkoda ◽  
Budhijanto Budhijanto ◽  
Supranto Supranto ◽  
Imam Prasetyo ◽  
Suryo Purwono ◽  
...  
2021 ◽  
Vol 11 (3) ◽  
pp. 1339-1352
Author(s):  
Mahamat Tahir Abdramane Mahamat Zene ◽  
Nurul Hasan ◽  
Ruizhong Jiang ◽  
Guan Zhenliang ◽  
Nurafiqah Abdullah

AbstractThe research of the current study is primarily focused on evaluating the reservoir performance by utilizing waterflood technique, based on a case study at Lanea oil field located in Chad; various mechanisms along with approaches were used in considering the best suitable pattern for waterflooding. All the simulation work was compared against a base case, where there was no involvement of water injection. Moreover, for the base case, a significant amount of oil left behind and cannot be swept, because of lower reservoir pressure at the downhill. The recovery factor obtained was in the range of 14.5–15% since 2010, and in order to enhance the oil production, an injection well was applied to boost the reservoir pressure; oil recovery is improved. In addition, sensitivity analysis study was performed to reach the optimum production behavior achieved by possible EOR method. Parameters, such as grid test, injection position, proper selection production location, permeability, and voidage substitution, were defined in the simulation study.


2010 ◽  
Author(s):  
Kyuro Sasaki ◽  
Shinzi Ono ◽  
Yuichi Sugai ◽  
Norio Tenma ◽  
Takao Ebinuma ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7415
Author(s):  
Ilyas Khurshid ◽  
Imran Afgan

The main challenge in extracting geothermal energy is to overcome issues relating to geothermal reservoirs such as the formation damage and formation fracturing. The objective of this study is to develop an integrated framework that considers the geochemical and geomechanics aspects of a reservoir and characterizes various formation damages such as impairment of formation porosity and permeability, hydraulic fracturing, lowering of formation breakdown pressure, and the associated heat recovery. In this research study, various shallow, deep and high temperature geothermal reservoirs with different formation water compositions were simulated to predict the severity/challenges during water injection in hot geothermal reservoirs. The developed model solves various geochemical reactions and processes that take place during water injection in geothermal reservoirs. The results obtained were then used to investigate the geomechanics aspect of cold-water injection. Our findings presented that the formation temperature, injected water temperature, the concentration of sulfate in the injected water, and its dilution have a noticeable impact on rock dissolution and precipitation. In addition, anhydrite precipitation has a controlling effect on permeability impairment in the investigated case study. It was observed that the dilution of water could decrease formation of scale while the injection of sulfate rich water could intensify scale precipitation. Thus, the reservoir permeability could decrease to a critical level, where the production of hot water reduces and the generation of geothermal energy no longer remains economical. It evident that injection of incompatible water would decrease the formation porosity. Thus, the geomechanics investigation was performed to determine the effect of porosity decrease. It was found that for the 50% porosity reduction case, the initial formation breakdown pressure reduced from 2588 psi to 2586 psi, and for the 75% porosity reduction case it decreased to 2584 psi. Thus, geochemical based formation damage is significant but geomechanics based formation fracturing is insignificant in the selected case study. We propose that water composition should be designed to minimize damage and that high water injection pressures in shallow reservoirs should be avoided.


Development ◽  
1953 ◽  
Vol 1 (3) ◽  
pp. 261-262
Author(s):  
Sven Hörstadius

Dr. I. Joan Lorch, of King's College, London, and I have made some experiments on sea-urchin eggs with desoxynucleic acids (DNA) prepared from sperms of several sea-urchin species by Professor Erwin Chargaff, of Columbia University, New York. Unfertilized eggs did not react when put into a solution of DNA in sea-water. Injection of a small amount of DNA dissolved in Callan's solution had the following consequences. If the DNA did not mix with the cytoplasm but remained as a distinct droplet, the egg could be fertilized. The droplet moved slowly towards the surface and ran out of the egg. This sometimes only occurred after several cleavages. Such eggs developed normally. If, on the other hand, the DNA mixed with the cytoplasm the egg became activated. A fertilization membrane was raised. The surface layer in dark field changed in colour from yellow to white as is the case upon fertilization.


Sign in / Sign up

Export Citation Format

Share Document