Successful Isolation of a Water Contribution Zone Using Fiber Optic Telemetry Enabled Coiled Tubing Conveyed Inflatable Packer Capped with Cement (Case Study)

2010 ◽  
Author(s):  
Alaa S. Shawly ◽  
Alaa A. Dashash ◽  
Bander F. Khateeb ◽  
Ahmed H. Muhammadi ◽  
Vsevolod Bugrov ◽  
...  
2021 ◽  
Author(s):  
Ibnu Maulana ◽  
Bambang Purwanto ◽  
Doni Arief Makriva ◽  
Genie Ageng Sugiarto ◽  
Diah Setianti Kuswardani ◽  
...  

Abstract Coiled tubing (CT) equipped with fiber optics and real-time downhole telemetry and a fit-for-purpose CT tower were used in underbalanced perforating operations in six wells in Indonesia; each operation involved 800 ft of perforating guns, and each was completed in a single trip. The reservoir is thick, with high permeability and characterized by high content of CO2 and H2S. The underbalanced perforating technique was deemed fundamental to minimize formation damage in the near-wellbore area, and the campaign was part of a national strategic project to develop a block's main reserve to supply gas to drive the national economy. Each well had to be completed with minimum of an 800-ft perforation interval to deliver an average of 60 MMscf/D gas production for 16 years plateau with up to 34% CO2 content and 10,000-ppm H2S. The traditional method of e-line overbalanced perforating in such harsh environment became inefficient because of the number of runs required, which can be as high as 40 runs per well. CT-conveyed perforating guns and a completion insertion retrieval of equipment under pressure (CIRP) system were chosen to execute the task. The fiber-optic CT real-time telemetry system was selected to improve downhole depth accuracy, confirm the underbalance condition, and provide real-time confirmation when the 800 ft of guns detonated downhole. To execute the six-well campaign safely, a customized 100-ft CT tower was brought into the country. Because this was the first in-country application for fiber-optic-enabled CT in single-trip with an 800-ft underbalanced perforation interval, thorough planning and preparation were critical for a successful campaign. Considering the high gas rate, high CO2, and H2S content, a downhole lubricator valve was added as additional barrier during undeployment, and an H2S and CO2 inhibitor was used to protect CT string integrity. Another risk mitigation plan was to utilize real-time CT inspection to monitor the CT integrity and condition throughout the job. Slickline deployment was used in first two wells to deploy multiple guns into the well, but this was deemed inefficient. The CT deployment method was used to complete the campaign. The project comprised a total of 2,200 operating hours, 29 CT runs, and 4,969 ft of guns in six trips with 917 ft as the longest interval. All six wells were completed with no HSE events, no automotive incidents, 98% operational efficiency, and 21% faster than planned duration. This successful six-well campaign represents a first in-country application, which contributed to developing this main gas reserve. The campaign provides lessons for job planning and preparation, technology implementation, execution, and continuous improvement, which can be implemented in similar projects in Indonesia and around the region.


Author(s):  
Fubin Zhang ◽  
David Maxwell

Abstract Based on the understanding of laser based techniques’ physics theory and the topology/structure of analog circuit systems with feedback loops, the propagation of laser induced voltage/current alteration inside the analog IC is evaluated. A setup connection scheme is proposed to monitor this voltage/current alteration to achieve a better success rate in finding the fail site or defect. Finally, a case of successful isolation of a high resistance via on an analog device is presented.


2021 ◽  
Author(s):  
Sufyan Deshmukh ◽  
Marcelo Dourado Motta ◽  
Sameer Prabhudesai ◽  
Mehul Patil ◽  
Yogesh Kumar ◽  
...  

Abstract A unique invert emulsion fluid (IEF) weighted up with treated micronized weighting agent (MWA) slurries has been developed and successfully implemented in the field as a completion and testing fluid. The utilization of this unique IEF by design allowed the fluid properties to be lower on viscosity and superior suspension characteristics, which allowed for thermally stable fluid and provided excellent downhole hydraulics performance. Much of the earlier development and deployment of this type of IEF was focused on drilling for sections in narrow mud weight and fracture gradient windows, coiled tubing operations, managed pressure drilling, and extended reach wells. Many of these drilling challenges are also encountered in high pressure and high temperature (HTHP) and ultra-deepwater field developments and mature, depleted fields. Early fluid developments focused on designing the fluids chemistry and physics interactions and the optimization of mineralogy of the weighing agent used. There was also some concern on variability of the results seen on the return permeability as well as standard fluid loss experiments. The paper describes the laboratory and field and rigsite data generated while using the MWA in IEFs during completion operations with a client in India. The paper will briefly describe the laboratory work before the application and the associated results observed on the rig site. It will also outline all the challenges which were faced during the execution and mixing of the MWA IEFs. Each separate operation required a high-density reservoir fluid solution above 15.5 ppg [1.85 sg]. Because corrosion, sag potential, and scale were the operator's main concerns, a solids-free brine or other type of weighting agent (for e.g. Calcium Carbonate and/or Tri-Manganese Tetra Oxide) solution was not favored. A high-density IEF designed with MWA allowed us to provide a solution that mitigated against the risks identified in each operation. The thin viscosity profile enabled completion activities to proceed with minimal fluid consumption at surface, reducing the overall environmental impact. The high-density (15.6 ppg [1.86 SG] and 16.2 ppg [1.94 SG]) invert emulsion fluid was designed to minimize sag potential with minimal reservoir damage potential. With a thinner viscosity profile compared to conventional IEFs at equivalent densities, the fluid enabled completion activities with minimal fluid volumes lost over shakers and reduced the environmental impact. The MWA that was used to build the IEF used for drilling and completion fluid enabled maintenance of extremely low-shear rate viscosities when compared to conventional barite-laden fluids. This fluid was used for suspending and abandoning the well in Case Study A, where the reentry and intervention of the well was planned to be after 2 years. After exposure of the fluid in Case Study A, the fluid showed minimum sag after re-entry of the well and the intervention activities were done without any problems. Case Study B showed that the fluid was mixed to the density of 16.2 ppg and was used to perforate and test two different zones. The bottom hole static temperature (BHST) reported were 356 degF (180 degC) for Case Study A and 376 degF (191 degC) for Case Study B respectively. The paper attempts to show the effects of using this alternative weighing agent as a completion fluid instead of a high-density solids-free brine or other solids-laden high-density brines and the associated success, which could be managed if the fluid design is carefully planned.


2020 ◽  
Author(s):  
Nur’ain Minggu ◽  
Ammar Kamarulzaman ◽  
Chang Siong Ting ◽  
Dahlila Kamat ◽  
Latief Riyanto ◽  
...  
Keyword(s):  

2019 ◽  
Author(s):  
T. Kimura ◽  
Y. Chen ◽  
Y. Kobayashi ◽  
Z. Xue ◽  
K. Adachi

Sign in / Sign up

Export Citation Format

Share Document