A Multiscale Adaptive Local-Global Method for Modeling Flow in Stratigraphically Complex Reservoirs

SPE Journal ◽  
2012 ◽  
Vol 17 (04) ◽  
pp. 1056-1070 ◽  
Author(s):  
Faruk O. Alpak ◽  
Mayur Pal ◽  
Knut-Andreas Lie

Summary A robust and efficient simulation technique is developed on the basis of the extension of the mimetic finite-difference method (MFDM) to multiscale hierarchical-hexahedral (corner-point) grids by use of the multiscale mixed finite-element method (MsMFEM). The implementation of the mimetic subgrid-discretization method is compact and generic for a large class of grids and, thereby, is suitable for discretizations of reservoir models with complex geologic architecture. Flow equations are solved on a coarse grid where basis functions with subgrid resolution account accurately for subscale variations from an underlying fine-scale geomodel. The method relies on the construction of approximate velocity spaces that are adaptive to the local properties of the differential operator. A variant of the method for computing velocity basis functions is developed that uses an adaptive local-global (ALG) algorithm to compute multiscale velocity basis functions by capturing the principal characteristics of global flow. Both local and local-global methods generate subgrid-scale velocity fields that reproduce the impact of fine-scale stratigraphic architecture. By using multiscale basis functions to discretize the flow equations on a coarse grid, one can retain the efficiency of an upscaling method, while at the same time produce detailed and conservative velocity fields on the underlying fine grid. The accuracy and efficacy of the multiscale method is compared with those of fine-scale models and of coarse-scale models with no subgrid treatment for several two-phase-flow scenarios. Numerical experiments involving two-phase incompressible flow and transport phenomena are carried out on high-resolution corner-point grids that represent explicitly example stratigraphic architectures found in real-life shallow-marine and turbidite reservoirs. The multiscale method is several times faster than the direct solution of the fine-scale problem and yields more accurate solutions than coarse-scale modeling techniques that resort to explicit effective properties. The accuracy of the multiscale simulation method with ALG-velocity basis functions is compared with that of the local velocity basis functions. The multiscale simulation results are consistently more accurate when the local-global method is employed for computing the velocity basis functions.

2016 ◽  
Vol 879 ◽  
pp. 1207-1212 ◽  
Author(s):  
Piotr Macioł ◽  
Danuta Szeliga ◽  
Łukasz Sztangret

A typical multiscale simulation consists of numerous fine scale models, usually one for each computational point of a coarse scale model. One of possible ways of limiting computing power requirements is replacing fine scale models with some simplified and speeded up ersatz ones. In this paper, the authors attempt to develop a metamodel, replacing direct thermodynamic computations of precipitation kinetic with an advanced approximating model. MatCalc simulator has been used for thermodynamic modelling of precipitation kinetic. Typical heat treatment of P91 steel grade was examined. Selected variables were chosen to be modelled with approximating models. Several attempts with various approximation variants (interpolation algorithms and Artificial Neural Networks) have been investigated and its comparison is included in the paper.


Author(s):  
Negin Alemazkoor ◽  
Conrad J Ruppert ◽  
Hadi Meidani

Defects in track geometry have a notable impact on the safety of rail transportation. In order to make the optimal maintenance decisions to ensure the safety and efficiency of railroads, it is necessary to analyze the track geometry defects and develop reliable defect deterioration models. In general, standard deterioration models are typically developed for a segment of track. As a result, these coarse-scale deterioration models may fail to predict whether the isolated defects in a segment will exceed the safety limits after a given time period or not. In this paper, survival analysis is used to model the probability of exceeding the safety limits of the isolated defects. These fine-scale models are then used to calculate the probability of whether each segment of the track will require maintenance after a given time period. The model validation results show that the prediction quality of the coarse-scale segment-based models can be improved by exploiting information from the fine-scale defect-based deterioration models.


SPE Journal ◽  
2006 ◽  
Vol 11 (03) ◽  
pp. 304-316 ◽  
Author(s):  
Arild Lohne ◽  
George A. Virnovsky ◽  
Louis J. Durlofsky

Summary In the coarse-scale simulation of heterogeneous reservoirs, effective or upscaled flow functions (e.g., oil and water relative permeability and capillary pressure) can be used to represent heterogeneities at subgrid scales. The effective relative permeability is typically upscaled along with absolute permeability from a geocellular model. However, if no subgeocellular-scale information is included, the potentially important effects of smaller-scale heterogeneities (on the centimeter to meter scale) in both capillarity and absolute permeability will not be captured by this approach. In this paper, we present a two-stage upscaling procedure for two-phase flow. In the first stage, we upscale from the core (fine) scale to the geocellular (intermediate) scale, while in the second stage we upscale from the geocellular scale to the simulation (coarse) scale. The computational procedure includes numerical solution of the finite-difference equations describing steady-state flow over the local region to be upscaled, using either constant pressure or periodic boundary conditions. In contrast to most of the earlier investigations in this area, we first apply an iterative rate-dependent upscaling (iteration ensures that the properties are computed at the appropriate pressure gradient) rather than assume viscous or capillary dominance and, second, assess the accuracy of the two-stage upscaling procedure through comparison of flow results for the coarsened models against those of the finest-scale model. The two-stage method is applied to synthetic 2D reservoir models with strong variation in capillarity on the fine scale. Accurate reproduction of the fine-grid solutions (simulated on 500'500 grids) is achieved on coarse grids of 10'10 for different flow scenarios. It is shown that, although capillary forces are important on the fine scale, the assumption of capillary dominance in the first stage of upscaling is not always appropriate, and that the computation of rate-dependent effective properties in the upscaling can significantly improve the accuracy of the coarse-scale model. The assumption of viscous dominance in the second upscaling stage is found to be appropriate in all of the cases considered. Introduction Because of computational costs, field-simulation models may have very coarse cells with sizes up to 100 to 200 m in horizontal directions. The cells are typically populated with effective properties (porosity, absolute permeability, relative permeabilities, and capillary pressure) upscaled from a geocellular (or geostatistical) model. In this way, the effects of heterogeneity on the geocellular scale will be included in the large-scale flow calculations. The cell sizes in geocellular models may be on the order of 20 to 50 m in horizontal directions. However, heterogeneities on much smaller scales (cm- to m- scale) may have a significant influence on the reservoir flow (Coll et al. 2001; Honarpour et al. 1994), and this potential effect cannot be captured if the upscaling starts at the geocellular scale.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259716
Author(s):  
Jordan DiNardo ◽  
Kevin L. Stierhoff ◽  
Brice X. Semmens

White abalone (Haliotis sorenseni) was once commonly found in coastal waters of the Southern California Bight (SCB) and south to Punta Abreojos, Baja California, Mexico. During the 1970s, white abalone supported a commercial fishery, which reduced the population and resulted in the closure of the fishery in 1996. When population levels continued to decline, National Marine Fisheries Service (NMFS) listed the species as endangered under the Endangered Species Act. The California Department of Fish and Wildlife and NMFS began surveying the wild populations, propagating specimens in captivity, and protecting its seabed habitat. We modeled coarse-scale (17 x 17 km) historical (using fishery-dependent data [1955–1996]) and contemporary (using fishery-independent data [1996–2017]) distributions of white abalone throughout its historical domain using random forests and maximum entropy (MaxEnt), respectively, and its fine-scale (10 x 10 m) contemporary distribution (fishery-independent data) using MaxEnt. We also investigated potential outplanting habitat farther north under two scenarios of future climate conditions. The coarse-scale models identified potential regions to focus outplanting efforts within SCB while fine-scale models can inform population monitoring and outplanting activities in these particular areas. These models predict that areas north of Point Conception may become candidate outplant sites as seawater temperatures continue to rise in the future due to climate change. Collectively, these results provide guidance on the design and potential locations for experimental outplanting at such locations to ultimately improve methods and success of recovery efforts.


SPE Journal ◽  
2016 ◽  
Vol 21 (06) ◽  
pp. 2112-2127 ◽  
Author(s):  
Faruk O. Alpak ◽  
Jeroen C. Vink

Summary Numerical modeling of the in-situ conversion process (ICP) is a challenging endeavor involving thermal multiphase flow, compositional pressure/volume/temperature (PVT) behavior, and chemical reactions that convert solid kerogen into light hydrocarbons and are tightly coupled to temperature propagation. Our investigations of grid-resolution effects on the accuracy and performance of ICP simulations demonstrated that ICP-simulation outcomes (e.g., oil/gas production rates and cumulative volumes) may exhibit relatively large errors on coarse grids, where “coarse” means a gridblock size of more than 3 to 5 m. On the other hand, coarse-scale models are attractive because they deliver favorable computational performance, especially for optimization and uncertainty quantification workflows that demand a large number of simulations. Furthermore, field-scale models become unmanageably large if gridblock sizes of 3 to 5 m or less have to be used. Therefore, there is a clear business need to accelerate the ICP simulations with minimal compromise of accuracy. We developed a novel multiscale-modeling method for ICP that reduces numerical-modeling errors and approximates the fine-scale simulation results on relatively coarse grids. The method uses a two-scale adaptive local-global solution technique. One global coarse-scale and multiple local fine-scale near-heater models are timestepped in a sequentially coupled fashion. At a given global timestep, the global-model solution provides accurate boundary conditions to the local near-heater models. These boundary conditions account for the global characteristics of the thermal-reactive flow and transport phenomena. In turn, fine-scale information about heater responses is upscaled from the local models, and used in the global coarse-scale model. These flow-based effective properties correct the thermal-reactive flow and transport in the global model either explicitly, by updating relevant coarse-grid properties for the next timestep, or implicitly, by repeatedly updating the properties through a convergent iterative scheme. Upon convergence, global coarse-scale and local fine-scale solutions are compatible with each other. We demonstrate the much-improved accuracy and efficiency delivered by the multiscale method by use of a 2D cross-section pattern-scale ICP simulation problem. The following conclusions are reached through numerical testing: (1) The multiscale method significantly improves the accuracy of the simulation results over conventionally upscaled models. The method is particularly effective in correcting the global coarse-scale model through the use of the fine-scale information about heater temperatures to regulate the heat-injection rate into the formation more accurately. The effective coarse-grid properties computed by the multiscale method at every timestep also enhance the accuracy of the ICP simulations, as demonstrated in a dedicated test case, in which a constant heat-injection rate is enforced across models of all investigated resolutions. (2) Multiscale ICP models result in accelerated simulations with a speed-up of four to 16 times with respect to fine-scale models “out of the box” without any special optimization effort. (3) Our multiscale method delivers high-resolution solutions in the vicinity of the heaters at a reduced computational cost. These fine-scale solutions can be used to better understand the evolution of the fluids and solids (e.g., kerogen conversion and coke deposition) in the vicinity of the heaters (several-feet-long spatial scale). Simultaneously, with the fine-scale near-heater solutions, the local-global coupled multiscale model provides key commercial ICP performance indicators at the pattern scale (several-hundred-feet-long spatial scale) such as production functions.


SPE Journal ◽  
2008 ◽  
Vol 13 (02) ◽  
pp. 267-273 ◽  
Author(s):  
Hui Zhou ◽  
Hamdi A. Tchelepi

Summary Multiscale methods have been developed for accurate and efficient numerical solution of flow problems in large-scale heterogeneous reservoirs. A scalable and extendible Operator-Based Multiscale Method (OBMM) is described here. OBMM is cast as a general algebraic framework. It is natural and convenient to incorporate more physics in OBMM for multiscale computation. In OBMM, two operators are constructed: prolongation and restriction. The prolongation operator is constructed by assembling the multiscale basis functions. The specific form of the restriction operator depends on the coarse-scale discretization formulation (e.g., finitevolume or finite-element). The coarse-scale pressure equation is obtained algebraically by applying the prolongation and restriction operators to the fine-scale flow equations. Solving the coarse-scale equation results in a high-quality coarse-scale pressure. The finescale pressure can be reconstructed by applying the prolongation operator to the coarse-scale pressure. A conservative fine-scale velocity field is then reconstructed to solve the transport (saturation) equation. We describe the OBMM approach for multiscale modeling of compressible multiphase flow. We show that extension from incompressible to compressible flows is straightforward. No special treatment for compressibility is required. The efficiency of multiscale formulations over standard fine-scale methods is retained by OBMM. The accuracy of OBMM is demonstrated using several numerical examples including a challenging depletion problem in a strongly heterogeneous permeability field (SPE 10). Introduction The accuracy of simulating subsurface flow relies strongly on the detailed geologic description of the porous formation. Formation properties such as porosity and permeability typically vary over many scales. As a result, it is not unusual for a detailed geologic description to require 107-108 grid cells. However, this level of resolution is far beyond the computational capability of state-of-the-art reservoir simulators (106 grid cells). Moreover, in many applications, large numbers of reservoir simulations are performed (e.g., history matching, sensitivity analysis and stochastic simulation). Thus, it is necessary to have an efficient and accurate computational method to study these highly detailed models. Multiscale formulations are very promising due to their ability to resolve fine-scale information accurately without direct solution of the global fine-scale equations. Recently, there has been increasing interest in multiscale methods. Hou and Wu (1997) proposed a multiscale finite-element method (MsFEM) that captures the fine-scale information by constructing special basis functions within each element. However, the reconstructed fine-scale velocity is not conservative. Later, Chen and Hou (2003) proposed a conservative mixed finite-element multiscale method. Another multiscale mixed finite element method was presented by Arbogast (2002) and Arbogast and Bryant (2002). Numerical Green functions were used to resolve the fine-scale information, which are then coupled with coarse-scale operators to obtain the global solution. Aarnes (2004) proposed a modified mixed finite-element method, which constructs special basis functions sensitive to the nature of the elliptic problem. Chen et al. (2003) developed a local-global upscaling method by extracting local boundary conditions from a global solution, and then constructing coarse-scale system from local solutions. All these methods considered incompressible flow in heterogeneous porous media where the pressure equation is elliptic. A multiscale finite-volume method (MsFVM) was proposed by Jenny et al. (2003, 2004, 2006) for heterogeneous elliptic problems. They employed two sets of basis functions--dual and primal. The dual basis functions are identical to those of Hou and Wu (1997), while the primal basis functions are obtained by solving local elliptic problems with Neumann boundary conditions calculated from the dual basis functions. Existing multiscale methods (Aarnes 2004; Arbogast 2002; Chen and Hou 2003; Hou and Wu 1997; Jenny et al. 2003) deal with the incompressible flow problem only. However, compressibility will be significant if a gas phase is present. Gas has a large compressibility, which is a strong function of pressure. Therefore, there can be significant spatial compressibility variations in the reservoir, and this is a challenge for multiscale modeling. Very recently, Lunati and Jenny (2006) considered compressible multiphase flow in the framework of MsFVM. They proposed three models to account for the effects of compressibility. Using those models, compressibility effects were represented in the coarse-scale equations and the reconstructed fine-scale fluxes according to the magnitude of compressibility. Motivated to construct a flexible algebraic multiscale framework that can deal with compressible multiphase flow in highly detailed heterogeneous models, we developed an operator-based multiscale method (OBMM). The OBMM algorithm is composed of four steps:constructing the prolongation and restriction operators,assembling and solving the coarse-scale pressure equations,reconstructing the fine-scale pressure and velocity fields, andsolving the fine-scale transport equations. OBMM is a general algebraic multiscale framework for compressible multiphase flow. This algebraic framework can also be extended naturally from structured to unstructured grid. Moreover, the OBMM approach may be used to employ multiscale solution strategies in existing simulators with a relatively small investment.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Vahid Esfahanian ◽  
Khosro Ashrafi

In this paper, two categories of reduced-order modeling (ROM) of the shallow water equations (SWEs) based on the proper orthogonal decomposition (POD) are presented. First, the traditional Galerkin-projection POD/ROM is applied to the one-dimensional (1D) SWEs. The result indicates that although the Galerkin-projection POD/ROM is suitable for describing the physical properties of flows (during the POD basis functions’ construction time), it cannot predict that the dynamics of the shallow water flows properly as it was expected, especially with complex initial conditions. Then, the study is extended to applying the equation-free/Galerkin-free POD/ROM to both 1D and 2D SWEs. In the equation-free/Galerkin-free framework, the numerical simulation switches between a fine-scale model, which provides data for construction of the POD basis functions, and a coarse-scale model, which is designed for the coarse-grained computational study of complex, multiscale problems like SWEs. In the present work, the Beam & Warming and semi-implicit time integration schemes are applied to the 1D and 2D SWEs, respectively, as fine-scale models and the coefficients of a few POD basis functions (reduced-order model) are considered as a coarse-scale model. Projective integration is applied to the coarse-scale model in an equation-free framework with a time step grater than the one used for a fine-scale model. It is demonstrated that equation-free/Galerkin-free POD/ROM can resolve the dynamics of the complex shallow water flows. Moreover, the computational cost of the approach is less than the one for a fine-scale model.


2009 ◽  
Vol 01 (01) ◽  
pp. 157-176 ◽  
Author(s):  
DONGWOO SOHN ◽  
JAE HYUK LIM ◽  
YOUNG-SAM CHO ◽  
SEYOUNG IM

A novel multiscale FE scheme is proposed for simulation of crack propagation in heterogeneous media. A fine scale mesh is constructed to model the crack tip and the microstructures around the near-tip field, while a coarse scale mesh is introduced to model the far field, wherein the effect of the microstructures is averaged through the homogenization theory to yield the average macroscopic constitutive relationship. The so-called variable node elements are subsequently employed to connect the fine scale zone in a seamless way to the coarse scale zone. The moving crack tip is modeled in a straightforward manner with the conventional quarter-point singular element. Several numerical examples are presented to demonstrate the scheme as an effective tool for multiscale simulation of crack propagation in consideration of the microstructures in a heterogeneous body.


2020 ◽  
Vol 90 (11) ◽  
pp. 2397-2412
Author(s):  
Iman Valizadeh ◽  
Oliver Weeger

Abstract The objective of this contribution is the numerical investigation of growth-induced instabilities of an elastic film on a microstructured soft substrate. A nonlinear multiscale simulation framework is developed based on the FE2 method, and numerical results are compared against simplified analytical approaches, which are also derived. Living tissues like brain, skin, and airways are often bilayered structures, consisting of a growing film on a substrate. Their modeling is of particular interest in understanding biological phenomena such as brain development and dysfunction. While in similar studies the substrate is assumed as a homogeneous material, this contribution considers the heterogeneity of the substrate and studies the effect of microstructure on the instabilities of a growing film. The computational approach is based on the mechanical modeling of finite deformation growth using a multiplicative decomposition of the deformation gradient into elastic and growth parts. Within the nonlinear, concurrent multiscale finite element framework, on the macroscale a nonlinear eigenvalue analysis is utilized to capture the occurrence of instabilities and corresponding folding patterns. The microstructure of the substrate is considered within the large deformation regime, and various unit cell topologies and parameters are studied to investigate the influence of the microstructure of the substrate on the macroscopic instabilities. Furthermore, an analytical approach is developed based on Airy’s stress function and Hashin–Shtrikman bounds. The wavelengths and critical growth factors from the analytical solution are compared with numerical results. In addition, the folding patterns are examined for two-phase microstructures and the influence of the parameters of the unit cell on the folding pattern is studied.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
No-Wook Park

A geostatistical downscaling scheme is presented and can generate fine scale precipitation information from coarse scale Tropical Rainfall Measuring Mission (TRMM) data by incorporating auxiliary fine scale environmental variables. Within the geostatistical framework, the TRMM precipitation data are first decomposed into trend and residual components. Quantitative relationships between coarse scale TRMM data and environmental variables are then estimated via regression analysis and used to derive trend components at a fine scale. Next, the residual components, which are the differences between the trend components and the original TRMM data, are then downscaled at a target fine scale via area-to-point kriging. The trend and residual components are finally added to generate fine scale precipitation estimates. Stochastic simulation is also applied to the residual components in order to generate multiple alternative realizations and to compute uncertainty measures. From an experiment using a digital elevation model (DEM) and normalized difference vegetation index (NDVI), the geostatistical downscaling scheme generated the downscaling results that reflected detailed characteristics with better predictive performance, when compared with downscaling without the environmental variables. Multiple realizations and uncertainty measures from simulation also provided useful information for interpretations and further environmental modeling.


Sign in / Sign up

Export Citation Format

Share Document