Performance Standards For Safety Critical Elements - Are We Doing Enough!

Author(s):  
Rahul Dhar

2021 ◽  
Author(s):  
Girish Kamal

Abstract Safety Critical Elements (SCEs) are the equipment and systems that provide the foundation of risk management associated with Major Accident Hazards (MAHs). A SCE is classified as an equipment, structure or system whose failure could cause or contribute to a major accident, or the purpose of which is to prevent or limit the effect of a major accident. Once the SCE has been ascertained, it is essential to describe its critical function in terms of a Performance Standard. Based on the Performance Standard, assurance tasks can be stated in the maintenance system to ensure that the required performance is confirmed. By analyzing the data in the maintenance system, confidence can be gained that all the SCEs required to manage Major Accidents and Environmental Hazards are functioning correctly. Alternatively, corrective actions can be taken to reinstate the integrity of the systems if shortcomings are identified. This paper shall detail out how the MAH and SCE Management process is initiated to follow the best industry practices in the identification and integrity management of major accident hazards as well as safety critical equipment. The tutorial shall describe in detail the following important stages:Identification of Major Accident HazardsIdentification of Safety Critical Equipment, involved in managing Major Accident HazardsDefine Performance Standards for these Safety Critical EquipmentExecution of the Assurance processes that maintain or ensure the continued suitability of the SCE Equipment, and that these are meeting the Performance StandardsVerification that all stages have been undertaken, any deviations being managed and thus that Major Accident Hazards are being controlled.Analyze and Improve Through the diligent application of these stages, it is possible to meet the requirements for MAH and SCE Management process giving a better understanding and control of risks in the industry.





2010 ◽  
Vol 2 (3) ◽  
pp. 410-418 ◽  
Author(s):  
Patricia J. Hicks ◽  
Daniel J. Schumacher ◽  
Bradley J. Benson ◽  
Ann E. Burke ◽  
Robert Englander ◽  
...  

Abstract Background The Accreditation Council for Graduate Medical Education (ACGME) and the American Board of Pediatrics (ABP) have partnered to initiate the Pediatrics Milestone Project to further refine the 6 ACGME competencies and to set performance standards as part of the continued commitment to document outcomes of training and program effectiveness. Intervention Members of the Pediatrics Milestone Project Working Group searched the medical literature and beyond to create a synopsis of models and evidence for a developmental ontogeny of the elements for 52 subcompetencies. For each subcompetency, we created a series of Milestones, grounded in the literature. The milestones were vetted with the entire working group, engaging in an iterative process of revisions until reaching consensus that their narrative descriptions (1) included all critical elements, (2) were behaviorally based, (3) were properly sequenced, and (4) represented the educational continuum of training and practice. Outcomes We have completed the first iteration of milestones for all subcompetencies. For each milestone, a synopsis of relevant literature provides background, references, and a conceptual framework. These milestones provide narrative descriptions of behaviors that represent the ontogeny of knowledge, skill, and attitude development across the educational continuum of training and practice. Discussion The pediatrics milestones take us a step closer to meaningful outcome assessment. Next steps include undertaking rigorous study, making appropriate modifications, and setting performance standards. Our aim is to assist program directors in making more reliable and valid judgments as to whether a resident is a “good doctor” and to provide outcome evidence regarding the program's success in developing doctors.



Author(s):  
John V. Sharp ◽  
Edmund G. Terry ◽  
John Wintle

Many offshore installations in the North Sea have now exceeded their original design life and are in a life extension phase. A Framework of six processes has been developed for the management of ageing of Safety Critical Elements (SCEs) in offshore installations. The processes include an analysis of the effect of ageing modes on SCE performance. Examples of performance indicators for typical SCEs are proposed based on how their condition and performance as may be affected by physical deterioration and other effects of ageing. Indicators for calibrating the maturity and effectiveness of the management processes are also suggested.





1999 ◽  
Vol 122 (2) ◽  
pp. 93-99 ◽  
Author(s):  
J. Wang ◽  
O. Kieran

The offshore installations (safety case) regulations were developed in the UK in 1992 and came into force in 1993 in response to the accepted findings of the Piper Alpha enquiry. Recently, “the offshore installations and wells (design and construction, etc.) regulations” (DCR 1996) were introduced to offshore safety analysis. From the earliest stages of the installation’s life cycle, operators must ensure that all safety-critical elements in both the software and system domains be assessed. Hazards can be identified and the risks associated with them can be assessed and evaluated using a number of techniques and decision-making strategies, all aimed at producing an installation with lifetime safety integrity. In this paper, following a brief review of the current status of offshore safety regulation in the UK, several offshore safety assessment frameworks are presented. These include top-down, bottom-up, probabilistic, and subjective approaches. The conditions under which each approach may be applied effectively and efficiently are discussed. Probabilistic safety-based decision-making and subjective safety-based decision-making are then studied. Two examples are used to demonstrate the decision-making approaches. Recommendations on further development in offshore safety analysis are suggested. [S0892-7219(00)00901-8]



2014 ◽  
Author(s):  
Zhanar Yessekeyeva ◽  
Valentin Vandenbussche


Author(s):  
Glenn Pettitt ◽  
Philip Pennicott

Bowtie diagrams have become a widely-used method for demonstrating the relationship between the causes and consequences of hazardous events following the identification of Major Accident Hazards (MAHs). They are particularly useful for illustrating how safeguarding measures protect against particular threats or mitigate the various consequences of an incident. Bowtie diagrams have been widely used in a range of industries for over twenty years and are widespread in the upstream oil and gas industry, as well as other high hazard industries such as mining and nuclear. Bowtie diagrams are used for a range of purposes. At their simplest, they provide an overview of the measures in place to prevent and mitigate hazardous events, and as such are valuable additions to training programmes. A bowtie diagram provides an excellent platform to show regulatory authorities, trainees and new employees the various threats to a pipeline system, and what barriers are in place to prevent and control major accidents, such that the risks are as low as reasonably practicable. The bowtie process may be used during design, construction, operations and decommissioning. The bowtie for construction is different to that for design and operations, being more to do with occupational safety rather that loss of containment. However, the construction bowtie diagram still plays a vital role in minimising risk. Whilst the typical failure mechanisms for pipelines are generally well-established during operations, bowties have a key role in informing senior management of the measures in place to reduce risk. Furthermore, a large proportion of major accidents may occur at above ground installations (AGIs), and bowtie diagrams provide a mechanism to help management in the protection of personnel and potentially of nearby populations. For both cross-country pipelines and AGIs, the effectiveness of each barrier can be established to ensure that the risk of loss of containment is minimised. More detailed bowties may be used to assist in identifying safety critical elements (SCEs) or safety critical tasks; developing performance standards and defining process safety performance indicators. Often, the hardware shown by the barriers may be considered as SCEs, particularly in the case of effective barriers, such as vibration detection along the right-of-way (RoW) (prevention) or gas detection at AGIs (recovery). Where such barriers are defined as key to a major threat, the bowtie diagram illustrates the importance of good maintenance systems to ensure that the barriers have a high reliability. Thus, by defining the SCEs in a logical manner, bowties may be a key element in managing the risk from a pipeline system.



Sign in / Sign up

Export Citation Format

Share Document