A Semianalytical Forecasting Method for Unconventional Gas and Light Oil Wells: A Hybrid Approach for Addressing the Limitations of Existing Empirical and Analytical Methods

2015 ◽  
Vol 18 (01) ◽  
pp. 94-110 ◽  
Author(s):  
C.R.. R. Clarkson ◽  
F.. Qanbari

Summary The rapid pace of exploitation of unconventional gas and light oil plays in North America has necessitated the development of new production-forecasting methodologies to aid in reserves assessment, capital planning, and field optimization. The generation of defendable forecasts is challenged not only by reservoir complexities but also by the use of multifractured horizontal wells (MFHWs) for development. In this work, a semianalytical method (SAM) is developed to provide a solid theoretical basis for forecasting. The technique is analytical in that it uses the methods of Agarwal (2010) to calculate contacted oil in place and contacted gas in place (COIP/CGIP) from production rates, flowing pressures, and fluid properties. The rate-normalized pressure (RNP) derivative (RNP′) is a key component of the calculation; pseudopressure is used for gas cases. The technique is also empirical in that an empirical function is fitted to the resulting COIP/CGIP curve vs. time. Although the method is flexible enough that any equation can be used to represent the COIP/CGIP curve, and hence, the sequence of flow regimes exhibited by MFHWs, the equation must be capable of being integrated to allow the extraction of RNP. The stabilized COIP/CGIP during boundary-dominated flow (BDF) must be specified for forecasting—thereafter, the method uses a material-balance simulator to model BDF. Hence, if the well is still in transient flow, a range in forecasts may be generated, depending on the assumed stabilized COIP/CGIP. The new SAM addresses some of the current limitations of empirical and fully analytical (modeling) approaches. Empirical methods, which have been adapted to account for long transient and transitional flow periods associated with ultralow-permeability reservoirs, lack a theoretical basis, and therefore input parameters may be difficult to constrain. However, empirical methods are simple to apply and require a minimum amount of data for forecasting. Analytical models, while representing the physics better, nonetheless require additional reservoir and hydraulic-fracture data that may not be available on every well in the field. The SAM proposed herein is intended to bridge the gap between empirical and modeling-based approaches—it is more rigorous than purely empirical methods, while requiring a lesser amount of data than fully analytical techniques. The new method is tested against simulated and field cases (tight oil and shale gas). Although a simple power-law function is used in the current work to represent the COIP/OGIP curve, which appears adequate for the cases studied, one should note that wells exhibiting long transitional flow periods (e.g., elliptical/radial) will likely require a different functional form.

2021 ◽  
Author(s):  
Hongyang Chu ◽  
Xinwei Liao ◽  
Cao Wei ◽  
John Lee

Abstract Multi-well horizontal pads are common in unconventional reservoirs. With addition of infill wells and hydraulic fracturing, interference between multiple multi-fractured-horizontal wells (MFHWs) has become a serious issue. Current RTA workflows assume a single MFHW in the unconventional formation. This paper presents a new multi-MFHW solution and related analysis methodology to analyze targeted well rate performance in a multi-MFHW system. In this work, a semi-analytical equation describing multi-well pad in the Laplace domain with well interference is proposed. The proposed semi-analytical model can simulate the rate performance of a multi-well horizontal pad with variable BHP for a targeted well in the pad and different initial production durations for the offset well. From the constant BHP condition and Laplace transforms, we obtained multi-MFHW solutions for transient flow. We used superposition of various constant BHP solutions to study interference among various fractures and MFHWs. The variable BHP of the targeted well is achieved by a variable dimensionless BHP function in the Laplace domain without any convolution or deconvolution calculations. A systematic validation for the proposed method is conducted using a commercial numerical simulator for cases of different initial production times for offset MFHWs, multi-MFHWs with variable BHP. Through the total material balance of the multi-MFHW system, we can analyze a target well in the pad with this multi-MFHW analysis. Interference by offset wells often appears after pseudo-radial flow in the target well's hydraulic fracture. It causes the pressure derivative curve during elliptical and infinite-acting radial flow (IARF) to rise, as does the RNP derivative. The inverse semi-log derivative has the opposite trend. Well interference also makes the rate/pressure drop functions to deviate from initial straight lines in later stages. Sensitivity analysis of well spacing shows that "transition flow" will change from elliptical to formation linear flow between wells as well spacing increases and it can show the transitional flow characteristics in more common cases.


2012 ◽  
Vol 501 ◽  
pp. 388-392
Author(s):  
Hui Guang Bian ◽  
Wei Shuai Lv ◽  
Chuan Sheng Wang

The paper is used to analyze the structure of traditional synchronous rotor from the perspective which the helix angle between long edge and short edge has some difference. The specialized viscoelastic fluid software--Polyflow is used to dynamic simulation analyze the two different kinds of rotors during the process of flow mixing, and then to analyze the two kinds of rotor performance through the result of transient flow simulation which mixed for one second. The analysis revealed that the improved synchronous rotor had better axial tensile properties in the case of remaining the original performance basically unchanged. And that could improve mixing performance and the production efficiency of mixer more effectively. There will provide a theoretical basis for the optimization of the rotor configuration in future.


SPE Journal ◽  
2007 ◽  
Vol 12 (03) ◽  
pp. 322-338 ◽  
Author(s):  
Choongyong Han ◽  
Mojdeh Delshad ◽  
Kamy Sepehrnoori ◽  
Gary Arnold Pope

Summary A fully implicit, parallel, compositional reservoir simulator has been developed that includes both a cubic equation of state model for the hydrocarbon phase behavior and Hand's rule for the surfactant/oil/brine phase behavior. The aqueous species in the chemical model include surfactant, polymer, and salt. The physical property models include surfactant/oil/brine phase behavior, interfacial tension, viscosity, adsorption, and relative permeability as a function of trapping number. The fully implicit simulation results were validated by comparison with results from our IMPEC chemical flooding simulator (UTCHEM). The results indicate that the simulator scales well using clusters of workstations. Also, simulation results from parallel runs are identical to those using a single processor. Field-scale surfactant/polymer flood simulations were successfully performed with over 1,000,000 gridblocks using multiple processors. Introduction Chemical flooding is a method to improve oil recovery that involves the injection of a solution of surfactant and polymer followed by a polymer solution. The surfactant causes the mobilization of oil by decreasing interfacial tension, whereas the polymer increases the sweep efficiency by lowering the mobility ratio. Chemical flooding has the potential to recover a very high fraction of the remaining oil in a reservoir, but the process needs to be designed to be both cost effective and robust, which requires careful optimization. Several reservoir simulators with chemical flooding features have been developed as a tool for optimizing the design (Delshad et al. 1996; Schlumberger 2004; Computer Modeling 2004). The University of Texas chemical flooding simulator, UTCHEM (Delshad et al. 1996) is an example of a simulator that has been used for this purpose. However, because UTCHEM is an Implicit Pressure and Explicit Concentration (IMPEC) formulation and in its current form cannot run on parallel computers, realistic surfactant/polymer flooding simulations are limited to around 100,000 gridblocks because of small timestep restrictions and insufficient memory. Recently, the appropriate chemical module was added to the fully implicit, parallel, EOS compositional simulator called GPAS (General Purpose Adaptive Simulator) based on a hybrid approach (John et al. 2005). GPAS uses a cubic equation of state model for the hydrocarbon phase behavior and the parallel and object-based Fortran 95 framework for managing memory, input/output, and the necessary communication between processors (Wang et al. 1999; Parashar et al. 1997). In the hybrid approach implemented in GPAS, the material balance equations for hydrocarbon and water components are solved implicitly first. Then, the material balance equations for the aqueous components such as surfactant, polymer, and electrolytes are solved explicitly using the updated phase fluxes, saturations, and densities.


2021 ◽  
Author(s):  
Patrick Machado ◽  
Giovanna Carneiro ◽  
Andre Leibsohn ◽  
Reda Bouamra ◽  
Thiago Handerson ◽  
...  

Abstract The harsh conditions presented in Brazilian presalt, summed up with the complexity of its reservoir, generate a series of challenges to improve reservoir recovery. Routinely, we have used intelligent completion systems to address the major part of the challenges; however, with the new production rates new problems have arrived and the usual ones have turned more aggressive, generating risks even to the intelligent completion systems. Inorganic scale is a critical challenge in presalt reservoirs production. Future plans for presalt production include more robust flow conditions and the use of an all-electrical completion system. Higher flow rates are likely to increase the risk of scale deposition and an optimum design is required. To address the new challenges arising from the new perspective of exploration in the presalt fields, we developed the presented workflow to mitigate the scale deposition on completion valves. The method enables the optimization of choke geometry to reduce scale deposition on inflow control valves. The proposed workflow generates a criticalness parameter for geometry classification according to a scenario of mechanical failure (due to sleeve incapacity to move) or deviation of production design point. A computational fluid dynamics (CFD) simulation was developed and benchmarked by experimental data, thus CFD results for different scenarios and various choke geometries were used to build a risk analysis matrix, which allows the definition of the optimal choke design to mitigate scale on ICVs. The extracted criticalness parameter may be used as an evaluator to estimate the time to valve stuck due to scale deposition in a commercial 1D transient flow simulator, optimizing then valve cycling time.


Geotechnics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 492-533
Author(s):  
Kenneth Imo-Imo Israel Eshiet ◽  
Yong Sheng

This paper provides an in-depth review of research developments on a common phenomenon in oil and gas exploration: sand production. Due to its significant impact to reservoir productivity and production efficiency, sand production has been widely researched in recent years. This paper focused on the review of historical progress in experimental and analytical studies which helped to understand the nature of the sanding mechanism and identify conditions that favour the process. Collation of the experimental data and analytical solutions and formulations enabled the authors to comment on effectiveness and also limitations of the existing experimental protocols and analytical models. Sand production models were then grouped into categories based on initiation of sanding, rate and amount of sanding as well as the failure criterion incorporated in their formulation so that it will be more convenient for future researchers to identify and adopt an appropriate model for their own research. The review also confirms that there are still some aspects of sand production requiring further investigation, and maybe a hybrid approach combining experimental, analytical and numerical methods could be the best solution for future explorations.


Sign in / Sign up

Export Citation Format

Share Document