Flow in Linear Composite Reservoirs

2015 ◽  
Vol 18 (04) ◽  
pp. 577-589 ◽  
Author(s):  
Etim H. Idorenyin ◽  
Ezeddin E. Shirif

Summary This study presents a fast and accurate closed-form, fully analytical solution for modeling fluid flow in linear composite reservoirs. A linear composite system, as mentioned here, refers to a porous medium that can be represented as a linear assembly of distinct homogeneous regions. It is assumed that adjacent regions are connected along an interface of pressure and flux continuity. The solution presented here differs from known analytical models in literature because it does not contain an infinite series that often takes a toll on computational time, especially when accuracy is of prime importance. Thus, this solution finds great use in inverse problems encountered in both rate and pressure transient analyses primarily because of its accuracy and the relatively short computational time required. Depending on the values of the interface coefficients (key parameters in our solution), infinite boundaries, no-flow boundaries, constant-pressure boundaries, and transition interfaces (that is, partially sealing boundaries) can be represented in our model without much computational effort.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Daniele D’Agostino ◽  
Giulia Pasquale ◽  
Andrea Clematis ◽  
Carlo Maj ◽  
Ettore Mosca ◽  
...  

There is an increasing awareness of the pivotal role of noise in biochemical processes and of the effect of molecular crowding on the dynamics of biochemical systems. This necessity has given rise to a strong need for suitable and sophisticated algorithms for the simulation of biological phenomena taking into account both spatial effects and noise. However, the high computational effort characterizing simulation approaches, coupled with the necessity to simulate the models several times to achieve statistically relevant information on the model behaviours, makes such kind of algorithms very time-consuming for studying real systems. So far, different parallelization approaches have been deployed to reduce the computational time required to simulate the temporal dynamics of biochemical systems using stochastic algorithms. In this work we discuss these aspects for the spatial TAU-leaping in crowded compartments (STAUCC) simulator, a voxel-based method for the stochastic simulation of reaction-diffusion processes which relies on the Sτ-DPP algorithm. In particular we present how the characteristics of the algorithm can be exploited for an effective parallelization on the present heterogeneous HPC architectures.


2003 ◽  
Vol 125 (4) ◽  
pp. 234-241 ◽  
Author(s):  
Vincent Y. Blouin ◽  
Michael M. Bernitsas ◽  
Denby Morrison

In structural redesign (inverse design), selection of the number and type of performance constraints is a major challenge. This issue is directly related to the computational effort and, most importantly, to the success of the optimization solver in finding a solution. These issues are the focus of this paper, which provides and discusses techniques that can help designers formulate a well-posed integrated complex redesign problem. LargE Admissible Perturbations (LEAP) is a general methodology, which solves redesign problems of complex structures with, among others, free vibration, static deformation, and forced response amplitude constraints. The existing algorithm, referred to as the Incremental Method is improved in this paper for problems with static and forced response amplitude constraints. This new algorithm, referred to as the Direct Method, offers comparable level of accuracy for less computational time and provides robustness in solving large-scale redesign problems in the presence of damping, nonstructural mass, and fluid-structure interaction effects. Common redesign problems include several natural frequency constraints and forced response amplitude constraints at various frequencies of excitation. Several locations on the structure and degrees of freedom can be constrained simultaneously. The designer must exercise judgment and physical intuition to limit the number of constraints and consequently the computational time. Strategies and guidelines are discussed. Such techniques are presented and applied to a 2,694 degree of freedom offshore tower.


Author(s):  
Siyao Luan ◽  
Deborah L. Thurston ◽  
Madhav Arora ◽  
James T. Allison

In some cases, the level of effort required to formulate and solve an engineering design problem as a mathematical optimization problem is significant, and the potential improved design performance may not be worth the excessive effort. In this article we address the tradeoffs associated with formulation and modeling effort. Here we define three core elements (dimensions) of design formulations: design representation, comparison metrics, and predictive model. Each formulation dimension offers opportunities for the design engineer to balance the expected quality of the solution with the level of effort and time required to reach that solution. This paper demonstrates how using guidelines can be used to help create alternative formulations for the same underlying design problem, and then how the resulting solutions can be evaluated and compared. Using a vibration absorber design example, the guidelines are enumerated, explained, and used to compose six alternative optimization formulations, featuring different objective functions, decision variables, and constraints. The six alternative optimization formulations are subsequently solved, and their scores reflecting their complexity, computational time, and solution quality are quantified and compared. The results illustrate the unavoidable tradeoffs among these three attributes. The best formulation depends on the set of tradeoffs that are best in that situation.


1954 ◽  
Vol 58 (526) ◽  
pp. 703-719 ◽  
Author(s):  
R. E. D. Bishop

SummaryComplicated oscillatory systems may be broken down into component “ sub-systems ” for the purpose of vibration analysis. These will generally submit more readily to analytical treatment. After an introduction to the concept of receptance, the principles underlying this form of analysis are reviewed.The dynamical properties of simple systems (in the form of their receptances) may be tabulated. By this means the properties of a complicated system may be found by first analysing it into convenient sub-systems and then extracting the properties of the latter from a suitable table. A catalogue of this sort is given for the particular case of conservative torsional systems with finite freedom.The properties of the composite system which may be readily found in this way are (i) its receptances and (ii) its frequency equation. Tables are given of expressions for these in terms of the receptances of the component sub-systems. All of the tables may easily be extended. The tabulated receptances may also be used for determining relative displacements during free vibration in any principal mode.A method of presenting information on the vibration characteristics of machinery, which is effectively due to Carter, is illustrated by means of an example. More general adoption by manufacturers of this method (which requires no more computational effort than must normally be made) would lead to enormous savings of labour in calculating natural frequencies of composite systems.


2019 ◽  
Vol 8 (4) ◽  
pp. 3294-3302

The Optimal sidetrack time (tR-OPT) has been estimated for uncertainty of the probability of success (POS) of the sidetrack operation, reservoir properties and economics for a reservoir under primary recovery mechanism. The case studies worked on in literature considered in this study are for those for primary recovery in which production profiles were represented by empirical and analytical models. However, not all recovery can be adequately replicated by these analytical models. Hence, the need to apply proxy models not just to predict cumulative production but net-present-value (NPV). In this study the analysis of a decision tree with several branches is carried out to maximize NPV that is evaluated under the influence of production stoppage due to the sidetrack into another non-communicating upper zone with uncertainty of reservoir properties. The optimal sidetrack time adds a severe non-linearity in the response of the resulting proxy model and expected monetary value (EMV), the objective function. Multi -objective functions of proxy models over time-intervals for highly time impacted terminal branches, known as split design was applied to evaluate when to conduct a well sidetrack operation under risk and uncertainty in order to resolve severe non-linearity of the NPV solved by a standard optimization algorithm in a spreadsheet. The Predicted values of optimal sidetrack time by the developed workflow was relatively reasonable and highly satisfactory in comparison with simulation results and that of empirical and analytical models. Though, further performance improvement is possible, the constraint on computational time for multi-objective optimization must be weighed against the desired result. Monte Carlo implementation on EMV based on uncertainty of reservoir properties and varying POS acknowledges the fact that for favourable POS, that is values approaching 1.0, tR-OPT clustered at early production life with a spike and the later for unfavourable values.


Author(s):  
Jeremy Straub

This article presents a multi-goal solver for problems that can be modeled using a Blackboard Architecture. The Blackboard Architecture can be used for data fusion, robotic control and other applications. It combines the rule-based problem analysis of an expert system with a mechanism for interacting with its operating environment. In this context, numerous control or domain (system-subject) problems may exist which can be solved through reaching one of multiple outcomes. For these problems which have multiple solutions, any of which constitutes an end-goal, a solving mechanism which is solution-choice-agnostic and finds the lowest-cost path to the lowest-cost solution is required. Such a solver mechanism is presented and characterized herein. The performance of the solver (including both the computational time required to ascertain a solution and execute it) is compared to the naïve Blackboard approach. This performance characterization is performed across multiple levels of rule counts and rule connectivity. The naïve approach is shown to generate a solution faster, but the solutions generated by this approach, in most cases, are inferior to those generated by the solver.


Author(s):  
Isaac J. Sugden ◽  
Claire S. Adjiman ◽  
Constantinos C. Pantelides

The application of crystal structure prediction (CSP) to industrially relevant molecules requires the handling of increasingly large and flexible compounds. A revised model for the effect of molecular flexibility on the lattice energy that removes the discontinuities and non-differentiabilities present in earlier models (Sugden et al., 2016), with a view to improving the performance of CSP is presented. The approach is based on the concept of computing a weighted average of local models, and has been implemented within the CrystalPredictor code. Through the comparative investigation of several compounds studied in earlier literature, it is shown that this new model results in large reductions in computational effort (of up to 65%) and in significant increases in reliability. The approach is further applied to investigate, for the first time, the computational polymorphic landscape of flufenamic acid for Z′ = 1 structures, resulting in the successful identification of all three experimentally resolved polymorphs within reasonable computational time.


1970 ◽  
Vol 37 (3) ◽  
pp. 838-843 ◽  
Author(s):  
R. J. Nunge

The velocity distribution for time-dependent laminar flow in curved channels is derived. The analysis applies to flows with pressure gradients which are arbitrary functions of time. Numerical results are obtained for developing flow due to a constant pressure gradient. Developing flow in a straight channel is also discussed and it is found that the curvature ratio has only a small effect on the time required to reach the fully developed state.


2018 ◽  
Vol 159 ◽  
pp. 01009 ◽  
Author(s):  
Mohammad Ghozi ◽  
Anik Budiati

There are many applications of Genetic Algorithm (GA) and Harmony Search (HS) Method for solving problems in civil engineering design. The question is, still, which method is better for geometry optimization of a steel structure. The purpose of this paper is to compare GA and HS performance for geometric optimization of a steel structure. This problem is solved by optimizing a steel structure using GA and HS and then comparing the structure’s weight as well as the time required for the calculation. In this study, GA produced a structural weight of 2308.00 kg to 2387.00 kg and HS scored 2193.12 kg to 2239.48 kg. The average computational time required by GA is 607 seconds and HS needed 278 seconds. It concludes that HS is faster and better than GA for geometry optimization of a steel structure.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Junjie Ren ◽  
Yangyang Gao ◽  
Qiao Zheng ◽  
Delong Wang

Abstract Geologic discontinuities usually exist in subsurface permeable formations, where multiple reservoir regions with distinct properties are separated by linear leaky faults. This kind of heterogeneous reservoir is usually called a linear composite reservoir. Although many analytical/semi-analytical linear composite models have been established to investigate the pressure behavior for linear composite reservoirs, almost all of these models were aimed at vertical wells without hydraulic fracturing and there are few analytical/semi-analytical models of fractured vertical wells in linear composite reservoirs. This paper first derives the Laplace-space point source solution for anisotropic linear composite systems separated by a partially communicating fault. Then, superposition principle and fracture discrete scheme are employed to acquire the semi-analytical solution for finite-conductivity fractured vertical (FCFV) wells in anisotropic linear composite reservoirs with a fault. The proposed solution is validated against numerical solutions under different reservoir scenarios. The characteristic of the pressure behavior for an FCFV well in anisotropic linear composite reservoirs with a fault is discussed in detail. The proposed model can be employed to obtain accurate pressure response with high computational efficiency. It is a good start to further develop analytical/semi-analytical models for other complex well types in an anisotropic linear composite reservoir with a fault.


Sign in / Sign up

Export Citation Format

Share Document